• 1. Клеточная теория (КТ) Предпосылки клеточной теории
  • 2. Определение жизни на современном этапе развития науки
  • 3. Фундаментальные свойства живой материи
  • 4. Уровни организации жизни
  • ЛЕКЦИЯ № 1. Введение

    1. Клеточная теория (КТ) Предпосылки клеточной теории

    Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук – при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука – позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в воде одноклеточные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы – жидкого студенистого клеточного содержимого.

    Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:

    1) клетка – главная структурная единица всех живых организмов (как животных, так и растительных);

    2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;

    3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток. Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ

    1. Клетка – основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.

    2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.

    3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).

    Значение клеточной теории

    Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиологический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.

    2. Определение жизни на современном этапе развития науки

    Довольно трудно дать полное и однозначное определение понятию жизни, учитывая огромное разнообразие ее проявлений. В большинстве определений понятия жизни, которые давались многими учеными и мыслителями на протяжении веков, учитывались ведущие качества, отличающие живое от неживого. Например, Аристотель говорил, что жизнь – это «питание, рост и одряхление» организма; А. Л. Лавуазье определял жизнь как «химическую функцию»; Г. Р. Тревиранус считал, что жизнь есть «стойкое единообразие процессов при различии внешних влияний». Понятно, что такие определения не могли удовлетворить ученых, так как не отражали (и не могли отражать) всех свойств живой материи. Кроме того, наблюдения свидетельствуют, что свойства живого не исключительны и уникальны, как это казалось раньше, они по отдельности обнаруживаются и среди неживых объектов. А. И. Опарин определял жизнь как «особую, очень сложную форму движения материи». Это определение отражает качественное своеобразие жизни, которое нельзя свести к простым химическим или физическим закономерностям. Однако и в этом случае определение носит общий характер и не раскрывает конкретного своеобразия этого движения.

    Ф. Энгельс в «Диалектике природы» писал: «Жизнь есть способ существования белковых тел, существенным моментом которого является обмен веществом и энергией с окружающей средой».

    Для практического применения полезны те определения, в которых заложены основные свойства, в обязательном порядке присущие всем живым формам. Вот одно из них: жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии. Согласно данному определению жизнь представляет собой ядро упорядоченности, распространяющееся в менее упорядоченной Вселенной.

    Жизнь существует в форме открытых систем. Это означает, что любая живая форма не замкнута только на себе, но постоянно обменивается с окружающей средой веществом, энергией и информацией.

    3. Фундаментальные свойства живой материи

    Эти свойства в комплексе характеризуют любую живую систему и жизнь вообще:

    1) самообновление. Связано с потоком вещества и энергии. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад). В результате ассимиляции происходят обновление структур организма и образование новых его частей (клеток, тканей, частей органов). Диссимиляция определяет расщепление органических соединений, обеспечивает клетку пластическим веществом и энергией. Для образования нового нужен постоянный приток необходимых веществ извне, а в процессе жизнедеятельности (и диссимиляции, в частности) образуются продукты, которые нужно вывести во внешнюю среду;

    2) самовоспроизведение. Обеспечивает преемственность между сменяющимися генерациями биологических систем. Это свойство связано с потоками информации, заложенной в структуре нуклеиновых кислот. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями (несмотря на непрерывное обновление вещества). Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

    3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

    4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования. С раздражимостью связана саморегуляция живых систем по принципу обратной связи: продукты жизнедеятельности способны оказывать тормозящее или стимулирующее воздействие на те ферменты, которые стояли в начале длинной цепи химических реакций;

    5) поддержание гомеостаза (от гр. homoios – «подобный, одинаковый» и stasis – «неподвижность, состояние») – относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

    6) структурная организация – определенная упорядоченность, стройность живой системы. Обнаруживается при исследовании не только отдельных живых организмом, но и их совокупностей в связи с окружающей средой – биогеоценозов;

    7) адаптация – способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде. В ее основе лежат раздражимость и характерные для нее адекватные ответные реакции;

    8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных (дискретных) живых системы (например, клеток), а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем. На молекулярном уровне воспроизведение осуществляется благодаря матричному синтезу, новые молекулы образуются по программе, заложенной в структуре (матрице) ранее существовавших молекул;

    9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации).

    Тесно связана с ауторепродукцией жизни на молекулярном, субклеточном и клеточном уровнях. Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

    10) изменчивость – свойство, противоположное наследственности. За счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередь изменчивость связана с ошибками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации. Появляются новые признаки и свойства. Если они полезны для организма в данной среде обитания, то они подхватываются и закрепляются естественным отбором. Создаются новые формы и виды. Таким образом, изменчивость создает предпосылки для видообразования и эволюции;

    11) индивидуальное развитие (процесс онтогенеза) – воплощение исходной генетической информации, заложенной в структуре молекул ДНК (т. е. в генотипе), в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров. Этот процесс базируется на репродукции молекул, размножении, росте и дифференцировке клеток и других структур и др.;

    12) филогенетическое развитие (закономерности его установлены Ч. Р. Дарвином). Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов. Прогрессивная эволюция прошла ряд ступеней. Это до-клеточные, одноклеточные и многоклеточные организмы вплоть до человека.

    При этом онтогенез человека повторяет филогенез (т. е. индивидуальное развитие проходит те же этапы, что и эволюционный процесс);

    13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток. Каждая клетка состоит из органелл, но в то же время автономна. Наследственная информация осуществляется генами, но ни один ген в отдельности не может определять развитие того или иного признака.

    4. Уровни организации жизни

    Живая природа – это целостная, но неоднородная система, которой свойственна иерархическая организация. Иерархической называется такая система, в которой части (или элементы целого) расположены в порядке от высшего к низшему. Иерархический принцип организации позволяет выделить в живой природе отдельные уровни, что весьма удобно при из-учении жизни как сложного природного явления. Можно выделить три основные ступени живого: микросистемы, мезосистемы и макросистемы.

    Микросистемы (доорганизменная ступень) включают в себя молекулярный (молекулярно-генетический) и субклеточный уровни.

    Мезосистемы (организменная ступень) включают в себя клеточный, тканевый, органный, системный, организменный (организм как единое целое), или онтогенетический, уровни.

    Макросистемы (надорганизменная ступень) включают в себя популяционно-видовой, биоценотический и глобальный уровни (биосферу в целом). На каждом уровне можно выделить элементарную единицу и явление.

    Элементарная единица (ЭЕ) – это структура (или объект), закономерные изменения которой (элементарные явления, ЭЯ) составляют ее вклад в развитие жизни на данном уровне.

    Иерархические уровни:

    1) молекулярно-генетический уровень. ЭЕ представлена геном. Ген – это участок молекулы ДНК (а у некоторых виру-сов-молекулы РНК), который ответствен за формирование какого – либо одного признака. Информация, заложенная в нуклеиновых кислотах, реализуется посредством матричного синтеза белков;

    2) субклеточный уровень. ЭЕ представлена какой-либо субклеточной структурой, т. е. органеллой, которая выполняет свойственные ей функции и вносит свой вклад в работу клетки в целом;

    3) клеточный уровень. ЭЕ – это клетка, которая является самостоятельно функционирующей элементарной биологической системой. Только на этом уровне возможны реализация генетической информации и процессы биосинтеза. Для одноклеточных организмов этот уровень совпадает с организменным. ЭЯ – это реакции клеточного метаболизма, составляющие основу потоков энергии, информации и вещества;

    4) тканевый уровень. Совокупность клеток с одинаковым типом организации составляет ткань (ЭЕ). Уровень возник с появлением многоклеточных организмов с более или менее дифференцированными тканями. Ткань функционирует как единое целое и обладает свойствами живого;

    5) органный уровень. Образован совместно с функционирующими клетками, относящимися к разным тканям (ЭЕ). Всего четыре основные ткани входят в состав органов многоклеточных организмов, шесть основных тканей образуют органы растений;

    6) организменный (онтогенетический) уровень. ЭЕ – это особь в ее развитии от момента рождения до прекращения ее существования в качестве живой системы. ЭЯ – это закономерные изменения организма в процессе индивидуального развития (онтогенеза). В процессе онтогенеза в определенных условиях среды происходит воплощение наследственной информации в биологические структуры, т. е. на основе генотипа особи формируется ее фенотип;

    7) популяционно-видовой уровень. ЭЕ – это популяция, т. е. совокупность особей (организмов) одного вида, населяющих одну территорию и свободно скрещивающихся между собой. Популяция обладает генофондом, т. е. совокупностью генотипов всех особей. Воздействие на генофонд элементарных эволюционных факторов (мутаций, колебаний численности особей, естественного отбора) приводит к эволюционно значимым изменениям (ЭЯ);

    8) биоценотический (экосистемный) уровень. ЭЕ – биоценоз, т. е. исторически сложившееся устойчивое сообщество популяций разных видов, связанных между собой и с окружающей неживой природой обменом веществ, энергии и информации (круговоротами), которые и представляют собой ЭЯ;

    9) биосферный (глобальный) уровень. ЭЕ – биосфера (область распространения жизни на Земле), т. е. единый планетарный комплекс биогеоценозов, различных по видовому составу и характеристике абиотической (неживой) части. Биогеоценозы обусловливают все процессы, протекающие в биосфере;

    10) носферный уровень. Это новое понятие было сформулировано академиком В. И. Вернадским. Он основал учение o ноосфере как сфере разума. Это составная часть биосферы, которая изменена благодаря деятельности человека.








    Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке