• Ближайшее будущее (с настоящего момента до 2030 г.)
  • Интернет-очки и контактные линзы
  • Автомобиль без водителя
  • Экраны на четыре стены
  • Гибкая электронная бумага
  • Виртуальные миры
  • Здравоохранение в ближайшем будущем
  • Жизнь в сказке
  • Середина века (2030–2070 гг.)
  • Конец закона Мура
  • Смешение реальностей
  • Дополненная реальность: революция в туризме, искусстве, шопинге и войне
  • Универсальные переводчики
  • Голограммы и трехмерные образы
  • Далекое будущее (2070–2100 гг.)
  • Первенство духа над материей
  • Чтение мыслей
  • Сфотографировать мечту
  • Этично ли чтение мыслей?
  • Моя томограмма
  • Трикордеры и портативные сканеры мозга
  • Телекинез и божественное могущество
  • 1. Будущее компьютера

    Превосходство сознания над материей

    Человеку свойственно принимать границы собственного кругозора за границы мира.

    (Артур Шопенгауэр)

    Ни одному пессимисту в истории не удалось раскрыть тайны звезд, доплыть до неведомой земли или открыть новые горизонты человеческого разума.

    (Хелен Келлер)

    Живо вспоминается, как почти двадцать лет назад я сидел в кабинете Марка Визера (Mark Weiser) в Кремниевой долине и он рассказывал мне о том, как представляет себе будущее. Размахивая руками, он возбужденно говорил, что вот-вот начнется революция, которой суждено изменить мир. Визер входил в компьютерную элиту и работал в Исследовательском центре Xerox в Пало-Альто (именно они были пионерами в разработке персонального компьютера, лазерного принтера и передовой архитектуры типа Windows с графическим пользовательским интерфейсом). При этом он был бунтарем и иконоборцем, презирал традиционную мудрость и играл в диком рок-ансамбле.

    Тогда — кажется, с тех пор прошла целая жизнь — персональные компьютеры были еще новинкой. Они только начинали входить в жизнь обычных людей, да и люди пока плохо понимали, стоит ли покупать для табличных вычислений, набора и обработки текстов большой, громоздкий настольный компьютер. Интернет еще оставался по большей части закрытым Падением ученых вроде меня, обменивавшихся между собой загадочными формулами на тайном языке. Бурлили жаркие споры о том, не погубит ли этот ящик на столе нашу цивилизацию своим холодным непрощающим взором, не дегуманизирует ли природу человека. Даже политическому аналитику Уильяму Бакли (William F. Buckley) приходилось защищать текстовый процессор от интеллектуалов, которые восставали против него и клялись никогда не притрагиваться к компьютеру, называя его инструментом филистимлян.

    Именно в эту противоречивую эпоху Визер ввел понятие «глобальные вычисления». Он видел много дальше эпохи персональных компьютеров и предсказывал, что когда-нибудь электронные чипы станут настолько дешевыми и доступными, что найти их можно будет везде — в одежде, в мебели, в стенах наших домов, даже в нашем собственном теле. И все они будут подключены к Интернету, будут делиться данными, делать нашу жизнь приятнее, отслеживать все наши пожелания. Куда бы мы ни направились, вездесущие чипы будут молча выполнять наши желания. Среда обитания человека как бы оживет.

    Для своего времени мечта Визера была совершенно фантастической, даже абсурдной. Персональные компьютеры тогда были дороги и в большинстве своем даже не подключались к Интернету. Мысль о том, что миллиарды крохотных чипов когда-нибудь станут дешевле гороха, казалась бредом.

    А потом я спросил, почему он так уверен в этой своей революции. Он спокойно ответил, что в данный момент мощность компьютеров растет экспоненциально и пока конца этому не видно. Прикиньте сами, предложил он мне. Компьютерная революция — всего лишь дело времени. (Грустно только, что сам Визер не увидел предсказанной революции; он умер от рака в 1999 г.)

    Движущей силой пророческой мечты Визера было утверждение, известное как закон Мура — эмпирическое правило, управлявшее развитием компьютерной индустрии на протяжении полувека с лишним. Это правило, как метроном, задавало темп развития современной цивилизации. Сам по себе закон Мура очень прост: он гласит, что мощность компьютеров удваивается примерно каждые полтора года. Сформулировал его в 1965 г. Гордон Мур, один из основателей корпорации Intel. Действие этого закона обеспечило кардинальную перестройку мировой экономики, накопление сказочных богатств и необратимое изменение образа жизни современного человека. Если обозначить падение цен на компьютерные чипы, а также стремительный рост их скорости, мощности обработки данных и памяти на графике, построенном в логарифмическом масштабе, получим, что данные за последние пятьдесят лет замечательно ложатся на прямую. Более того, если добавить в этот график данные по ламповым и даже механическим вычислительным машинам и устройствам, прямую Мура можно протянуть в прошлое более чем на 100 лет.

    Экспоненциальный рост иногда сложно себе представить, потому что человек, вообще говоря, мыслит линейно. Изменения накапливаются плавно и постепенно, так что иногда их вообще не замечаешь. Но проходит несколько десятков лет — и все вокруг неузнаваемо меняется.

    Согласно закону Мура с каждым Рождеством ваши компьютерные игры становятся чуть ли не вдвое более мощными (в смысле числа используемых транзисторов), чем это было год назад. Более того, с течением лет этот ежегодный прирост достигает громадных размеров. К примеру, мы получаем на день рождения почтовую открытку с чипом, который исполняет для нас поздравительную песенку (обычное дело, ничего особенного). Так вот, этот чип по вычислительной мощности превосходит все, чем владели союзники в 1945 г. Гитлер, Черчилль или Рузвельт пошли бы на убийство ради того, чтобы заполучить этот чип. А мы? Пройдет день рождения — и мы просто выбросим открытку вместе с чипом. Сегодня в вашем сотовом телефоне заключена большая вычислительная мощность, чем та, что находилась в распоряжении NASA в 1969 г., когда два астронавта впервые ступили на Луну. Видеоигры, которым для симуляции трехмерных объектов и сцен требуются громадные вычислительные мощности, используют больше компьютерных ресурсов, чем универсальные вычислительные машины прошлых десятилетий. Сегодняшняя игровая приставка стоимостью 300 долларов по вычислительной мощности сравнима с военным суперкомпьютером 1997 г., стоившим не один миллион.

    Разницу между линейным и экспоненциальным ростом вычислительных мощностей можно наглядно представить себе, прочитав статью 1949 г. Тогда журнал Popular Mechanics предрек, что компьютеры в будущем будут развиваться линейно и со временем, возможно, всего лишь удвоят или утроят мощность. Автор статьи писал: «Если сегодня в вычислителе, таком как ENIAC, содержится 18 000 электронных ламп и весит он 30 тонн, то в будущем компьютеры, возможно, будут содержать всего 1000 ламп и весить всего 1, 5 тонны».

    (Надо отметить, что мать-природа любит и ценит мощь экспоненциальной зависимости. Один-единственный вирус, захватив человеческую клетку, способен вынудить ее произвести несколько сотен копий самого себя. Увеличивая собственную численность в каждом поколении в 100 раз, один вирус может всего за пять поколений превратиться в 10 миллиардов точно таких же вирусов. При этом не стоит удивляться, что один-единственный вирус, проникая в человеческий организм, где функционируют триллионы здоровых клеток, всего через неделю или около того обеспечивает вам простуду.)

    Мощность компьютеров за прошедшие несколько десятилетий многократно выросла, но этого мало. Принципиально изменилась техническая база, на которой реализуются вычислительные мощности, а с ними и вся экономика. Посмотрим, как это происходило.


    1950-е гг. Компьютеры на вакуумных электронных лампах были гигантскими устройствами и представляли собой целые залы с настоящими джунглями из проводов, катушек и стальных шкафов. Только военные были достаточно богаты, чтобы финансировать эти чудовищные аппараты.

    1960-е гг. Электронные лампы сменились транзисторами, и компьютеры среднего класса постепенно вышли на коммерческий рынок.

    1970-е гг. Интегральные схемы с сотнями транзисторов позволили создать мини-компьютер размером с большой письменный стол.

    1980-е гг. Микросхемы с десятками миллионов транзисторов сделали возможными персональные компьютеры, которые уже умещались в чемоданчике.

    1990-е гг. Интернет соединил сотни миллионов компьютеров в единую глобальную компьютерную сеть.

    2000-е гг. Глобальные вычисления освободили микросхему от компьютера, так что чипы теперь повсюду.


    Таким образом, прежняя парадигма (один процессор внутри настольного компьютера или лэптоп, соединенный с обычным компьютером) постепенно сменяется новой (тысячи процессоров, разбросанных по всевозможным устройствам, включая мебель, бытовую технику, картины, стены, автомобили и одежду, и все они подсоединены к Интернету и общаются между собой).

    Когда в устройстве — все равно каком — появляется процессор, самая обычная вещь чудесным образом преображается. Пишущая машинка превратилась в текстовый процессор. Обычный телефон — в сотовый. Видео- и фотокамеры — в умные Цифровые устройства. Механические игровые автоматы — в видеоигры. Фонографы — в iPod. Самолеты, управляемые человеком, — в несущие смерть беспилотники-дроны. И в каждом случае промышленность, выпускавшая соответствующие Устройства, умирала и возрождалась полностью обновленной.

    Со временем практически все вокруг нас станет «умным».

    Микросхемы настолько подешевеют, что будут стоить меньше пластиковой упаковки и заменят собой штрихкоды. Компании, не сделавшие свою продукцию «умной», в один прекрасный день будут вытеснены с рынка конкурентами, которые вовремя об этом позаботились.

    Разумеется, вокруг нас по-прежнему будет немало компьютерных мониторов, но внешне они будут напоминать скорее кусок обоев, картину в рамке или семейную фотографию, а не сегодняшний компьютер. Представьте все картины и фотографии, которые украшают сегодня ваш дом; а теперь вообразите, что каждая из них «оживет», станет подвижной и свяжется с Интернетом. Подвижные изображения будут стоить не больше статичных и постепенно сменят их на стенах наших гостиных.

    Судьба компьютеров — как и других массовых технологий, таких как электричество, бумага и водопровод, стать невидимыми, т. е. врасти в ткань нашей жизни и нашего мира, быть везде и нигде. Их предназначение — молча и незаметно исполнять наши желания.

    Сегодня, входя в комнату, мы автоматически ищем взглядом электрический выключатель, поскольку уверены: дом электрифицирован, в стенах есть проводка, и в комнате можно включить свет. В будущем первое, что мы будем искать при входе в незнакомую комнату, — это интернет-портал, ведь мы будем уверены: это «умная» комната. Романист Макс Фриш (Мах Frisch) однажды сказал: «Техника — это способность так организовать свой мир, чтобы с ней не приходилось сталкиваться».

    Кроме всего прочего, закон Мура позволяет нам предсказывать на ближайшее будущее эволюцию компьютера. В последующие десять лет процессоры объединятся со сверхчувствительными датчиками; компьютеры научатся видеть и различать болезни, потенциальные происшествия и несчастные случаи и будут заранее, пока ситуация не вышла из-под контроля, предостерегать человека о возможных опасностях. Они научатся в какой-то степени узнавать нас по голосам и лицам, а также раз говаривать и общаться с человеком на формализованном языке.

    Они смогут самостоятельно создавать целые виртуальные миры, о которых сегодня мы можем только мечтать. Около 2020 г. стоимость электронного чипа, возможно, упадет настолько, что процессоры станут дешевле бумаги. Все вокруг наполнится миллионами чипов, способных выполнять наши команды.

    В конце концов само слово «компьютер» будет забыто.

    Чтобы удобнее было говорить о будущем прогрессе науки и техники, я разделил каждую главу книги на три части: ближайшее будущее (от сего дня до 2030 г.), середина века (с 2030 по 2070 г.) и, наконец, далекое будущее, с 2070 по 2100 г. Конечно, такое деление условно, а датировки приблизительны, но они помогут нам ориентироваться во временных рамках различных тенденций, о которых пойдет речь в книге.

    Стремительный рост вычислительных мощностей к 2100 г. обеспечит нам едва ли не божественное могущество и позволит управлять окружающей действительностью при помощи одной только силы мысли. Подобно мифическим богам, которые умели мановением руки или легким кивком головы двигать предметы и изменять человеческую жизнь, мы научимся воздействовать на вещественный мир силой своего сознания. Мы будем поддерживать постоянный мысленный контакт с электронными чипами, разбросанными повсюду в нашем окружении, и эти молчаливые слуги будут улавливать и безотказно исполнять наши мысленные приказы.

    Помню, когда-то я смотрел эпизод «Звездного пути», где экипаж звездолета «Энтерпрайз» попадает на планету, населенную греческими богами, и перед астронавтами возникает бог Аполлон — гигантская фигура, способная ослепить и ошеломить земной экипаж божественными чудесами. Поначалу наука XXIII в. ничего не может противопоставить могуществу бога, который тысячи лет назад повелевал небесами античной Греции. Но стоило землянам побороть шок от встречи с греческими богами — такими знакомыми и могущественными, — как они поняли, что у могущества этих существ должен быть вполне материальный источник и что Аполлон, скорее всего, находится в ментальной связи с центральным компьютером и мощными механизмами, которые, собственно, и исполняют его приказы. Как только экипаж нашел и уничтожил силовую станцию, Аполлон превратился в обычного смертного.

    Это, конечно, всего лишь голливудская сказка. Однако экстраполируя последние научные открытия и технические достижения, ученые уже могут представить себе тот день, когда мы тоже научимся телепатически управлять компьютерами и получим силу легендарного Аполлона.

    Ближайшее будущее

    (с настоящего момента до 2030 г.)

    Интернет-очки и контактные линзы

    Сегодня мы поддерживаем связь с Интернетом при помощи компьютеров и сотовых телефонов. Но в будущем Интернет будет повсюду.

    Существует несколько способов вывести связь с Интернетом на линзу. Изображение может передаваться со стекол очков через линзу глаза непосредственно на сетчатку. Можно также проецировать изображение на линзу, которая в этом случае будет играть роль экрана. Или можно прикрепить экран к оправе очков наподобие крохотной линзы, какими пользуются ювелиры. Глядя сквозь стекла очков, мы будем, будто на киноэкране, видеть перед собой интернет-экран. При этом устройство дистанционного управления в руках позволит нам управлять действиями компьютера по беспроводной связи. А можно просто шевелить пальцами в воздухе и таким образом управлять изображением — ведь компьютер постоянно регистрирует положение наших пальцев.

    К примеру, ученые Вашингтонского университета с 1991 г. занимаются разработкой виртуального ретинального монитора VRD (virtual retinal display) — устройства, в котором красный, зеленый и синий лазерные лучи проецируются непосредственно на сетчатку глаза. При разрешении 1600х1200 точек на дюйм при угле зрения 120° VRD-монитор может создавать яркое жизненное изображение, сравнимое с картинкой на киноэкране. Устройство для генерации изображения может быть встроено в шлем, в специальные или обычные очки.

    У меня еще в 1990-е гг. была возможность испытать на себе такие интернет-очки, один из первых их образцов, разработанных учеными медиалаборатории Массачусетского технологического института (MIT). Внешне этот прибор выглядел как обычные очки, только справа и немного сбоку на них была закреплена дополнительная цилиндрическая линза длиной около полудюйма. При обычном положении этой дополнительной линзы я прекрасно видел сквозь очки, но стоило слегка нажать пальцем — и крохотная линза занимала место перед глазом. При этом передо мной появлялось легко различимое изображение компьютерного экрана, на взгляд чуть меньше стандартного. Оно было удивительно четким; казалось, что смотришь прямо в экран. Более того, взяв в руки небольшое — размером с сотовый телефон — устройство с кнопками, я получил возможность управлять курсором на экране и даже печатать команды.

    В 2010 г., когда я был ведущим одной из программ телеканала Science Channel, мне довелось побывать в форте Беннингс (штат Джорджия) и увидеть последнюю модель «Интернета Для поля боя» армии США под названием «Пехотинец». Я надел особый шлем с закрепленным сбоку миниатюрным экранчиком. Передвинув экран так, чтобы он оказался перед глазами, я внезапно увидел поразительное зрелище: панораму поля битвы, на которой крестиками было обозначено расположение своих и вражеских войск. «Туман войны» внезапно рассеялся, PS-сенсоры точно определили положение воинских частей, танков и зданий и обозначили на схеме местности. Стоило нажать кнопку — и изображение мгновенно изменилось, открыв мне прямо на поле боя выход в Интернет и предоставив информацию о погоде, диспозиции войск, стратегии и тактике.

    В более продвинутой версии прибора интернет-экран мог бы проецироваться непосредственно в глаз через контактные линзы со встроенным в пластик чипом и LCD-экраном. Бабак Парвиз (Babak A. Parviz) и его группа в Университете Вашингтона в Сиэтле разрабатывают базу для создания контактных линз с Интернетом; пока это лишь прототип, но позже такая технология, возможно, изменит обычную технику доступа в Интернет.

    Парвиз считает, что одним из ближайших по времени приложений этой технологии могло бы стать устройство для постоянного контроля уровня глюкозы в крови диабетиков. Линза будет демонстрировать вам текущие значения параметров, характеризующих состояние вашего организма. Но это лишь начало. Парвиз уверен, что наступит день, когда мы сможем загружать из Интернета любые фильмы, песни, сайты или информационные сообщения и видеть их на контактной линзе-экране. По существу, линза станет экраном полнофункционального развлекательного центра, и можно будет лежа на диване наслаждаться художественными фильмами. Через этот же центр можно будет подключиться к офисному компьютеру и получить доступ к хранящимся там файлам и программам. Достаточно будет моргнуть глазом, чтобы прямо с пляжа связаться с офисом и организовать видеоконференцию.

    Добавив в интернет-очки программное обеспечение для распознавания образов, вы получите возможность видеть перед собой объекты и даже лица людей. Уже сегодня некоторые программы распознавания могут узнавать заранее введенные в них лица с более чем 90 %-ной точностью. И тогда уже в начале разговора вы увидите перед собой не только имя человека, но и его биографию и характеристику. В обществе это поможет избежать неловкости при встрече со знакомым человеком, имени которого вы вспомнить не можете. На многолюдной вечеринке, где собираются малознакомые или вовсе не знакомые между собой люди, эта функция станет еще более полезной, ведь среди гостей могут оказаться очень важные персоны, с которыми вы пока не знакомы. Описанная система поможет вам узнать их в лицо и получить о них кое-какую информацию, не прибегая к посторонней помощи, практически во время разговора. (Вспомните, как видел мир робот в фильме «Терминатор»; примерно так же будет видеть окружающее человек в интернет-очках будущего.)

    Как следствие, может кардинально измениться система образования. В будущем учащиеся на экзамене смогут незаметно сканировать Интернет при помощи контактных линз и находить там ответы на любые вопросы; учителям, ориентирующимся в основном на механическое запоминание, будет трудно поймать такого ученика. Это означает, что преподавателям придется обращать особое внимание на проверку способности рассуждать и мыслить логически.

    А еще можно встроить в оправу ваших интернет-очков, к примеру, крошечную видеокамеру, которая будет снимать окружающее и передавать картинку прямо в Интернет. Люди по всему миру смогут вместе с вами переживать происходящее в вашей жизни. На что бы вы ни смотрели, тысячи людей смогут увидеть это вместе с вами. Родители будут знать, чем заняты их дети. Влюбленные смогут, находясь в разлуке, делиться впечатлениями. Зрители на концертах — передавать свой восторг другим поклонникам любимых артистов. Инспекторы, посещающие отдаленные подразделения компании, смогут держать босса в курсе происходящего. (Или житейский пример: один из супругов ходит по магазину, а другой комментирует товары и выдает ценные указания по поводу покупок.)

    Парвизу уже удалось изготовить плоский компьютерный чип, который можно разместить внутри полимерной пленки — контактной линзы. Он сумел также поместить в контактную линзу светодиод и теперь работает над линзой матрицей 8x8 светодиодов. Его линзой можно управлять по беспроводной связи. Парвиз утверждает: «Со временем подобные компоненты будут содержать сотни светодиодов, которые будут формировать перед глазом всевозможные изображения — тексты, диаграммы и фотографии. Значительная часть деталей полупрозрачна, так что пользователи смогут ориентироваться в реальном мире, не натыкаясь на предметы и не теряя чувства ориентации». Конечная цель исследователя — а она по-прежнему далека — создать контактную линзу из 3600 точек не более 10 мкм толщиной.

    Одно из серьезных преимуществ контактных интернет-линз — низкое энергопотребление, всего несколько миллионных долей ватта, так что они очень экономны и не посадят батарейку. Еще одно преимущество — непосредственный доступ к мозгу человека без необходимости вживлять электроды (поскольку оптический нерв в определенном смысле можно считать продолжением мозга). При этом следует отметить, что глаз и оптический нерв передают информацию со скоростью, превосходящей скорость высокоскоростного кабельного соединения с Интернетом. Таким образом, контактная интернет-линза представляет собой, возможно, наиболее эффективный и высокоскоростной доступ к мозгу.

    Передать изображение в глаз через контактную линзу несколько сложнее, чем через интернет-очки. Светодиод может сгенерировать световую точку, или пиксель, но необходимо добавить еще микролинзу, которая сфокусировала бы эту точку непосредственно на сетчатку. Получившееся в итоге изображение будет как бы висеть в воздухе перед вашими глазами на расстоянии немного более полуметра. В более продвинутой схеме, над которой сейчас работает Парвиз, предполагается использовать микролазеры, чтобы подать на сетчатку сразу резкое изображение. При помощи той же технологии травления, которая используется при производстве микропроцессоров для вытравливания крохотных транзисторов, можно вытравить на кремниевой подложке и крохотные лазеры примерно такого же размера — самые миниатюрные лазеры в мире. Технология а принципе позволяет изготовить лазеры с поперечным размером около 100 атомов. Как и с транзисторами, технически можно поместить на подложку размером с ноготь миллионы лазеров.

    Автомобиль без водителя

    В ближайшем будущем, вероятно, человек получит возможность, сидя за рулем, спокойно бродить по Сети и рассматривать сайты при помощи контактной интернет-линзы или интернет-очков. Дорога на работу перестанет быть такой мучительной и нудной, потому что автомобили научатся управлять собой сами. Уже сегодня машина с GPS-приемником, позволяющим определить положение в пространстве с точностью до пары метров, может проехать без водителя сотни километров. Агентство перспективных исследовательских проектов Минобороны США (DARPA) спонсировало конкурс под названием DARPA Grand Challenge, в котором научным коллективам предлагалось представить автомобили без водителя на гонку через пустыню Мохаве; за победу полагался приз — миллион долларов. Так DARPA продолжает традицию финансирования рискованных, но перспективных технологий.

    (Кстати, в числе исследовательских проектов Пентагона можно назвать и Интернет, первоначальной целью которого было обеспечение связи для ученых и чиновников во время и после ядерной войны, и систему GPS, разработанную для наведения межконтинентальных ракет. Но позже, после завершения холодной войны, и Интернет, и GPS были рассекречены и стали общедоступными.)

    Первый конкурс в 2004 г. получился странным — ни один автомобиль без водителя не смог проехать 150 миль по пересеченной местности и пересечь финишную линию. Все роботизированные машины либо сломались, либо сбились с пути. Однако уже в следующем году пять машин сумели выполнить новое задание, даже более сложное: им нужно было проехать по дорогам, где было 100 крутых поворотов, три узких тоннеля и участки, проходящие по краю пропасти.

    Некоторые критики утверждают, что роботизированные автомобили научатся, возможно, ездить по пустыне, но никогда не смогут нормально ориентироваться в забитом машинами мегаполисе. Поэтому в 2007 г. DARPA объявило еще более амбициозный проект — Urban Challenge, в котором машины-роботы должны были проехать 60 сложных миль по имитированной городской территории не больше чем за шесть часов. Машины должны были соблюдать все правила дорожного движения, разъезжаться в пути с другими участниками конкурса и корректно проезжать перекрестки. Шесть команд успешно завершили дистанцию, а три лучшие получили призы соответственно два, один и полмиллиона долларов.

    Цель Пентагона — сделать треть сухопутных сил США автономными к 2015 г. Вполне возможно, что такие технологии спасут множество жизней, ведь известно, что чаще всего американские солдаты гибнут от заложенных на дорогах мин. В будущем многие транспортные средства армии США будут ездить вообще без водителей. Для обычного же потребителя такая технология будет означать, что для управления автомобилем достаточно нажать кнопку, а остальное сделает робот; человек «за рулем» сможет работать, отдыхать, рассматривать окружающие пейзажи, смотреть кино или бродить по Интернету.

    На съемках одной из научно-популярных программ для канала «Дискавери» мне и самому довелось поездить в такой машине. Это был обтекаемый спортивный автомобиль, модифицированный и полностью роботизированный инженерами из Университета штата Северная Каролина. Он был снабжен компьютерами, по мощности в восемь раз превосходящими обычный PC, и умел ездить совершенно автономно. Надо сказать, что втиснуться внутрь этой машины оказалось непросто слишком там все было забито оборудованием. Везде — на сиденьях, на панели управления, на полу — громоздились какие-то сложные на вид электронные устройства. Взявшись за рулевое колесо, я заметил резиновый шнур и небольшой моторчик, при помощи которого компьютер мог, собственно, поворачивать руль и управлять машиной.

    Я повернул ключ в замке, надавил на газ и вывел машину на шоссе, а затем щелкнул переключателем, давая команду компьютеру взять управление на себя. После этого я снял руки с рулевого колеса, и автомобиль поехал дальше сам. Я ощущал уверенность и полностью доверял компьютеру, который непрерывно вносил крохотные поправки и чуть доворачивал руль при помощи моторчика. Поначалу было немного странно видеть, как рулевое колесо и педаль газа двигаются сами по себе. Казалось, что управление взял на себя призрачный невидимый водитель, который находится где-то рядом, но через некоторое время я привык. Более того, чуть позже я с удовольствием расслабился и только смотрел, как машина катит вперед со сверхчеловеческим мастерством и точностью. Мне же оставалось лишь радоваться жизни и рассматривать пейзажи за окном.

    Сердце роботизированной машины — система GPS, позволяющая определить положение в пространстве с точностью до пары метров. (Специалисты утверждают, что иногда она определяет положение с точностью до десятков сантиметров[2].) Сама по себе система GPS — чудо современной техники. Каждый из примерно 30 спутников системы, находящихся на околоземной орбите, ведет постоянную радиопередачу с использованием собственного кода. GPS-приемники в машине принимают эти сигналы. Все сигналы немного искажаются, поскольку спутники в этот момент находятся на разном расстоянии от вас и движутся относительно вас в разных направлениях. Это искажение называется допплеровским сдвигом. (К примеру, радиоволны сжимаются, если спутник приближается к вам, и растягиваются, если удаляется.) Проанализировав небольшое искажение частот сигналов[3] от трех или четырех спутников, компьютер машины точно определяет нашу позицию.

    Кроме того, в бампере у машины установлен радар, так что она буквально чувствует препятствия. В будущем подобные сенсоры приобретут громадное значение и каждый автомобиль, почувствовав неминуемое столкновение, автоматически примет меры. В настоящее время в автокатастрофах в США погибает почти 40 000 человек ежегодно. Не исключено, что в будущем выражения «дорожно-транспортное происшествие» и «автокатастрофа» просто исчезнут из языка.

    Автомобильные пробки, возможно, когда-нибудь тоже уйдут в прошлое. Центральный компьютер сможет следить за движением всех машин на дороге и одновременно поддерживать связь со всеми роботизированными машинами. Он без труда заметит пробки и заторы на маршруте. В эксперименте, проведенном к северу от Сан-Диего на федеральном шоссе N-15, в дорожное полотно были встроены специальные датчики, позволявшие центральному процессору следить за ситуацией. В будущем в случае затора на дороге компьютер будет перехватывать у водителя управление автомобилем и обеспечивать свободное движение.

    Автомобиль будущего научится чувствовать и другие опасности. Тысячи людей гибнут и получают травмы, потому что водитель уснул за рулем; особенно часто это происходит в ночное время или во время долгого монотонного пути. Но уже сегодня можно заставить компьютер следить за вашими глазами и регистрировать признаки утомления и сонливости, а затем подавать звуковой сигнал и будить водителя. Если это не поможет, компьютер возьмет управление на себя. Кроме того, компьютер может распознать присутствие внутри автомобиля избыточного количества алкоголя; не исключено, что такая мера поможет снизить количество аварий, связанных с алкоголем.

    Переход к умным автомобилям, конечно, произойдет не мгновенно. Сначала военные внедрят их у себя и в процессе эксплуатации устранят ошибки и недоделки. Затем роботизированные машины выйдут на рынок и в первую очередь появятся на длинных и скучных перегонах федеральных трасс. Затем они понемногу проникнут в пригороды и крупные города, но в случае необходимости водитель будет иметь возможность взять управление на себя. Пройдет какое-то время, и люди будут удивляться, как раньше жили без них.

    Экраны на четыре стены

    В будущем компьютеры не только облегчат нам поездки на работу и сократят число аварий на дорогах; они также помогут нам поддерживать связь с друзьями и знакомыми. Сейчас некоторые жалуются, что компьютерная революция изолировала нас друг от друга и дегуманизировала человеческие отношения. На самом деле все наоборот: компьютерная революция позволила нам экспоненциально расширить круг друзей и знакомых. В будущем, когда человеку станет одиноко или скучно, он сможет попросить настенный экран организовать для него партию в бридж с другими одинокими людьми по всему свету. Если понадобится помощь в планировании отпуска, организации путешествия или поиске партнера для свидания, ее окажет все тот же Настенный интернет-экран.

    В будущем при включении компьютера на экране будет появляться дружелюбное лицо (вы сможете подбирать его по своему вкусу и время от времени менять). Этого виртуального человека можно будет попросить спланировать для вас отпуск. Он (или она, конечно), зная заранее ваши пристрастия и предпочтения, просканирует Интернет и выдаст вам возможные варианты по наилучшим ценам.

    Кроме того, через настенные экраны можно будет устраивать семейные встречи и собрания. Все четыре стены вашей гостиной будут заняты экранами, и при желании вы сможете окружить себя лицами родных, находящихся далеко от вас. Может быть, кто-то не сможет приехать на важный семейный вечер — и тогда семья соберется на экранах и отметит встречу, наполовину реальную, наполовину виртуальную. Или при помощи контактных линз можно будет увидеть родных и близких перед собой как будто наяву, притом что на самом деле они в этот момент будут находиться от вас за тысячи километров. (Некоторые комментаторы отмечают, что Пентагон первоначально задумывал Интернет как «мужское» устройство приспособление для борьбы с врагом в военное время. Но сейчас Интернет стал в основном «женским», он используется как средство сближения и общения с людьми.)

    Телеконференции сменятся телеприсутствием — в ваших очках или контактных линзах появится полное трехмерное озвученное изображение человека, с которым вы хотите пообщаться. На совещании, к примеру, все будут сидеть за столом, при этом некоторые из участников будут видны только в вашей контактной интернет-линзе. Вынув линзу, вы увидите, что места этих людей за столом пусты. В линзе же вы будете видеть всех участников на местах. (На самом деле отсутствующие участники будут сидеть за похожим столом в другом месте, а специальная камера будет их снимать и передавать изображение через Интернет.)

    В фильме «Звездные войны» зрители с изумлением увидели, как в воздухе появляются трехмерные изображения людей. Но в будущем компьютерные технологии позволят нам видеть подобные изображения в контактных линзах, очках или на компьютерных настенных экранах.

    Поначалу человек, наверное, будет испытывать неловкость, разговаривая с пустой комнатой. Но вспомним: еще при появлении телефонов некоторые критиковали их за то, что человек при этом должен разговаривать с неодушевленным предметом. Люди опасались, что телефон постепенно полностью заменит собой личные контакты людей. В принципе, критики были правы, но сегодня нас нисколько не смущают разговоры с неодушевленными предметами и далекими голосами, потому что телефон чрезвычайно расширил наш круг контактов и обогатил нашу жизнь.

    Ваша личная жизнь также может сильно измениться. Если вы одиноки, ваш интернет-экран, зная ваши прошлые предпочтения, желаемые физические и социальные характеристики партнера, найдет для вас в Интернете подходящую кандидатуру. А поскольку люди иногда лгут в своих личных данных, экран, в качестве дополнительной предосторожности, автоматически проверит историю каждого кандидата.

    Гибкая электронная бумага

    Цены на плоские телеэкраны, когда-то превышавшие 10 000 долларов, всего за десять лет упали более чем в 50 раз. В будущем плоские экраны на целую стену также быстро упадут в цене. Настенные экраны на основе органических светодиодов OLED станут гибкими и сверхтонкими. Органические светодиоды во всем похожи на обычные, но работают в них органические составы, которые можно изготовить в виде полимера, — соответственно, они будут гибкими. Каждый пиксель на гибком экране будет соединен с транзистором, который будет управлять цветом и интенсивностью световой точки.

    Ученые из Центра разработки гибких дисплеев при Университете штата Аризона работают с компанией Hewlett-Packard тех США над усовершенствованием соответствующих технологий. После этого рыночные механизмы повлияют на то, чтобы цена на них упала и гибкие экраны стали доступны обычным потребителям. В конце концов этот процесс может привести к тому, что цена гибкого настенного экрана сравняется с ценой обычных обоев. Так что в будущем, оклеивая стены обоями, мы одновременно без дополнительных затрат будем получать и гибкие настенные экраны. Когда рисунок обоев на стенах надоест, его можно будет сменить одним нажатием кнопки. Отделать заново дом или квартиру будет проще простого.

    Технология гибких экранов произведет революцию и в том, как мы взаимодействуем с нашими портативными компьютерами. Нам не потребуется таскать с собой тяжеленные лэптопы. Портативный компьютер, возможно, будет представлять собой просто лоскут экрана на органических светодиодах, который в любой момент можно будет сложить и спрятать в бумажник. В мобильном телефоне появится большой экран, который можно будет вытянуть наружу, как свиток, и пользоваться им, вместо того чтобы, напрягая глаза, печатать на крошечной клавиатуре.

    Эта технология делает возможными и совершенно прозрачные компьютерные экраны. В недалеком будущем можно представить следующую сцену: человек смотрит в окно, затем взмахивает руками — и окно внезапно превращается в экран компьютера. Или на нем появляется изображение, любое, какое захочется. Скажем, вид за другим окном, находящимся за тысячи километров от этого.

    Сегодня мы легко относимся к бумаге; можем записать что-то на листе и не задумываясь выкинуть его за ненадобностью. В будущем, возможно, появятся «одноразовые компьютеры», никак особенно не идентифицируемые. На таком компьютере тоже можно будет записать что-нибудь, а потом, когда надобность в нем отпадет, просто выбросить. Сегодня человек организует рабочий стол и мебель в кабинете вокруг компьютера; именно компьютер — средоточие всякого офиса. В будущем настольных компьютеров, вероятно, не будет, а файлы мы будем носить с собой — с места на место, из комнаты в комнату или из офиса домой. Исчезнут разрывы в информации и необходимость в постоянной синхронизации данных. Сегодня в любом аэропорту можно увидеть пассажиров с портативными компьютерами в руках. Оказавшись в гостинице, такой путешественник сразу же подключается к Интернету, а по возвращении домой ему приходится перегружать файлы в настольный компьютер. В будущем вам не потребуется таскать компьютер за собой; везде, где бы вы ни оказались, в любой момент — даже находясь в машине или поезде — вы сможете подключиться к Интернету при помощи стен, картин и мебели. (Первый пример подобного подхода — так называемые «облачные» вычисления, когда платить вам приходится не за компьютер, а за компьютерное время, подобно тому как платят за воду или электричество.)

    Виртуальные миры

    Цель повсеместного использования компьютеров — сделать их неотъемлемой частью этого мира, наполнить окружающую среду процессорами и умными вещами. У виртуальной реальности обратная цель — дать человеку возможность войти в мир компьютера. Первыми, еще в 1960-е гг., виртуальную реальность придумали военные для тренировки летчиков и солдат с использованием симуляторов. Пилоты, сидя перед экраном компьютера и орудуя джойстиком, могли осваивать приземление на палубу авианосца. В случае ядерной войны генералы и политические лидеры, находящиеся в разных местах, могли бы тайно встретиться в киберпространстве.

    Сегодня, почти через полвека экспоненциального развития компьютерных технологий, человек может почти по-настоящему жить в виртуальном мире. Там можно управлять аватарой (движущимся изображением, представляющим вас в этом мире); но встречаться с другими аватарами и исследовать воображаемые миры, можно даже влюбиться и жениться. Кроме того, можно покупать виртуальные вещи за виртуальные деньги, которые, вообще говоря, можно превратить в настоящие. На одном из самых популярных сайтов, Second Life, к 2009 г. зарегистрировалось 16 млн абонентов. В том же году несколько человек умудрились заработать на этом сайте более чем по 1 млн долларов. (Надо сказать, что полученный на этом сайте доход облагается в США налогами, поскольку правительство справедливо считает его вполне реальным.)

    Виртуальная реальность — главный элемент и основа видеоигр. В будущем, с дальнейшим ростом компьютерных мощностей, вы сможете посещать нереальные миры при помощи интернет-очков или настенного экрана. Так, если вы захотите отправиться за покупками или посетить какое-то экзотическое место, вы сможете сначала проделать то же в виртуальной реальности, ощущая при этом эффект присутствия. Таким образом, вы сможете пройтись по Луне, отдохнуть на Марсе, прогуляться по магазинам на другом конце света, посетить любой музей и решить для себя, в какое из этих мест вы хотите попасть в реальности.

    В будущем человек получит возможность в некоторой степени почувствовать киберпространство и потрогать находящиеся там предметы. Так называемая «тактильная технология» позволяет человеку ощутить присутствие сгенерированных компьютером объектов. Когда-то ее придумали ученые, которым приходилось работать с материалами высокой радиоактивности при помощи манипуляторов, и военные, которым нужно было, чтобы летчики во время тренировки на симуляторе ощущали сопротивление «штурвала».

    Чтобы сымитировать чувство прикосновения, ученые создали устройство на пружинах и рычагах, которое должно было в ответ на давление пальцев создавать обратное давление, как при реальном прикосновении. К примеру, если человек проводит пальцами по виртуальному столу, это устройство может симулировать ощущения от соприкосновения с твердой деревянной поверхностью. Таким образом, вы получаете возможность чувствовать предметы, видимые в очках виртуальной реальности, ощущая собственное присутствие в виртуальном мире.

    Для создания ощущения текстуры материала используется другое устройство, поверхность которого усеяна тысячами крошечных управляемых пальцами бугорков. Одновременно с движением пальцев компьютер подстраивает высоту бугорков под характеристики соответствующей поверхности; можно вызвать таким образом ощущение прикосновения к твердой поверхности, бархатистой ткани или грубой наждачной бумаге. В будущем эта технология получит развитие, и специальные перчатки смогут дать вам гораздо более тонкие ощущения и сымитировать прикосновение ко множеству разных поверхностей.

    Вероятно, такая технология очень пригодится при обучении хирургов, потому что хирург во время сложной и тонкой операции должен ощущать пальцами сопротивление тканей; а в роли пациента при этом может выступать трехмерное голографическое изображение. Кроме того, это еще один шаг к созданию голодека из «Звездного пути», где человек мог бродить по виртуальному пространству и трогать виртуальные предметы. Передвигаясь по пустой комнате, вы можете видеть в очках или контактных линзах фантастические объекты; когда вы протягиваете к объекту руку, из пола поднимается тактильное устройство и симулирует для вас поверхность предмета.

    Я получил возможность увидеть эти технологии своими глазами, когда при подготовке передачи канала Science посетил полигон CAVE (cave automatic virtual environment) в Университете Роуэна в Нью-Джерси. Я вошел в пустую комнату и оказался в окружении четырех стен, залитых светом проекторов. На стены проецировались трехмерные изображения, создающие иллюзию присутствия в ином мире. В одной из демонстрационных сцен меня окружили со всех сторон гигантские кровожадные динозавры. Двигая джойстиком, я мог прокатиться на спине ужасного Tyrannosaurus rex, а при желании даже залезть к нему в пасть. Затем я побывал на Абердинском испытательном полигоне в штате Мэриленд, где Армия США соорудила самую продвинутую на сегодняшний день версию голодека. На меня надели шлем и рюкзак с датчиками, которые непрерывно сообщали компьютеру точное положение моего тела. Я походил по всенаправленной бегущей дорожке — хитроумному устройству, позволяющему идти или бежать в любом направлении, оставаясь при этом на месте. Неожиданно я оказался на поле боя, вокруг засвистели пули вражеских снайперов. Я мог бежать в любую сторону, прятаться в любом переулке или тупике, нестись по любой улице — и трехмерные изображения на экранах менялись соответственно. Я мог даже лечь ничком на пол, экраны корректно реагировали и на это. Можно представить, что в будущем в голодеке можно будет испытать эффект полного погружения — сражаться с инопланетными космическими кораблями, убегать от голодных чудовищ или развлекаться на необитаемом острове, не покидая собственной уютной гостиной.

    Здравоохранение в ближайшем будущем

    Процедура визита к врачу совершенно изменится. Для рутинной проверки достаточно будет поговорить с «доктором» — роботизированной программой, которая появится по запросу на вашем настенном экране и которая сможет диагностировать 95 % обычных заболеваний. Может быть, ваш «доктор» и будет выглядеть как человек, но на самом деле это будет анимированное изображение, запрограммированное на рутинное обследование и стандартные несложные вопросы. Кроме того, в его распоряжении будет полная карта ваших генов. «Доктор» порекомендует вам курс лечения с учетом всех генетических факторов риска.

    Чтобы диагностировать проблему, «доктор» попросит вас провести по телу несложным щупом или датчиком. В свое время зрители были поражены, увидев в оригинальном телесериале «Звездный путь» устройство под названием трикордер, которое могло мгновенно диагностировать любую болезнь и даже заглянуть внутрь тела. Однако для того, чтобы познакомиться с этим футуристическим Устройством, не обязательно ждать XXIII в. Аппараты для магнитно-резонансной томографии, которые когда-то занимали целые комнаты и весили по несколько тонн, уже уменьшились до ящика размером в несколько десятков сантиметров, а когда-нибудь станут маленькими, как сотовый телефон. Проведя таким устройством по телу, можно будет увидеть внутренние органы. Затем компьютер обработает полученное трехмерное изображение и выдаст диагноз. Такой зонд сможет распознать огромное количество болезней, включая рак, задолго до того, как их проявления станут заметны. В нем будут присутствовать, в частности, ДНК-чипы — кремниевые пластинки с миллионами крохотных сенсоров, настроенных на узнавание фрагментов ДНК, характерных для конкретных болезней.

    Не секрет, что многие люди ненавидят ходить к врачу. Однако в будущем за здоровьем человека будут незаметно и без всяких специальных процедур следить особые датчики; возможно, контрольные замеры будут проводиться по несколько раз в день, а вы не будете даже знать об этом. В ваш унитаз, зеркало в ванной, одежду будут встроены ДНК-чипы, которые сообщат, если в вашем организме появятся колонии хотя бы из нескольких сотен раковых клеток. В ванной комнате и в одежде будет помещаться больше всевозможных датчиков, чем сегодня можно найти в лаборатории современной больницы или университета. К примеру, достаточно будет подуть на зеркало, чтобы проверить наличие мутации в гене, отвечающем за производство белка р53, а этот белок отвечает за половину случаев всех самых Распространенных видов рака. Это означает, что слово «опухоль» постепенно исчезнет из языка.

    Сегодня, попав в серьезную автомобильную аварию на пустынной дороге, легко можно погибнуть от потери крови. В будущем ваша одежда и автомобиль при первых признаках травмы или плохого самочувствия водителя сами поднимут тревогу, автоматически вызовут скорую помощь, сообщат координаты места аварии и передадут врачам всю вашу медицинскую историю — и все это, пока вы остаетесь без сознания. В будущем вообще трудно будет умереть в одиночестве. Одежда при помощи встроенных в ткань чипов почувствует любые нарушения сердечного ритма, дыхания и даже мозговой деятельности. Одеваясь, человек будет выходить в Сеть.

    Сегодня уже можно поместить в пилюлю размером со стандартную таблетку аспирина компьютерный чип, снабженный телекамерой и радиопередатчиком. После того как вы ее проглотите, «умная пилюля» заснимет ваш пищевод и кишечник, а затем передаст сигнал по радио на расположенный рядом приемник. (Знаменитый слоган Intel Inside обретает новое значение!) Таким образом врачи могут получать снимки кишечника пациента без всякой колоноскопии (а этот метод весьма неудобен, поскольку предусматривает введение в толстую кишку двухметровой трубки). Подобные микроскопические устройства постепенно снизят необходимость использовать нож хирурга.

    Это лишь один пример того влияния, которое окажет компьютерная революция на здоровье человека и всю систему здравоохранения. В главах 3 и 4 мы поговорим о революции в медицине гораздо подробнее и обсудим также генную терапию, клонирование и увеличение продолжительности жизни.

    Жизнь в сказке

    Поскольку компьютерный интеллект, как мы уже говорили, сильно подешевеет и найдет широчайшее применение, некоторые футуристы считают, что будущее человечества будет похоже на сказку. Если человек обретет божественное могущество, то мир, в котором он живет, станет поистине сказочным. Интернет, к примеру, превратится в известное сказочное зеркальце. Достаточно будет обратиться к нему: «Свет мой, зеркальце, скажи…», — и в нем появится приветливое лицо, обеспечивающее нам доступ ко всей накопленной на планете мудрости. Мы будем встраивать процессоры в игрушки, делая их разумными, как Пиноккио — марионетка, мечтавшая стать настоящим мальчиком. Подобно Покахонтас, мы будем разговаривать с ветром и деревьями, и они будут отвечать нам. Мы привыкнем, что вещи разумны и что с ними можно общаться.

    Компьютеры распознают многие гены, ответственные за старение, и мы, возможно, будем вечно молодыми, как Питер Пэн. Мы научимся замедлять, а может быть, и поворачивать вспять процесс старения. Расширенная реальность внушит нам иллюзию того, что каждый из нас, подобно Золушке, может поехать на фантастический бал в королевской карете и танцевать там с прекрасным принцем. (Но в полночь очки расширенной реальности выключатся, и мы вернемся в реальный мир.) Компьютеры раскроют тайны генов, контролирующих наше тело, и мы сможем перестраивать свое тело по желанию, заменять изношенные органы и менять внешность даже на генетическом уровне, как чудовище в сказке «Аленький цветочек».

    Некоторые футуристы опасаются даже, что из-за всех этих чудес люди могут вернуться к средневековому мистицизму, когда все верили в невидимых духов, обитающих всюду вокруг нас.

    Середина века

    (2030–2070 гг.)

    Конец закона Мура

    Зададимся, однако, вопросом: как долго еще продлится компьютерная революция? Если закон Мура продержится еще лет пятьдесят, то компьютеры, скорее всего, намного превзойдут по возможностям человеческий мозг. Но к середине века возникнет другая динамика. Как сказал Джордж Харрисон, «все проходит». И е действие закона Мура должно прекратиться, а с ним — впечатляющий рост компьютерных мощностей, питавший последние полвека рост мировой экономики.

    Сегодня нам кажется естественным — и даже закономерным, — что возможности продуктов компьютерной отрасли растут практически на глазах. Именно поэтому мы каждый год покупаем новые модели, зная, что они почти в два раза мощнее прошлогодних. Но если закон Мура перестанет действовать и каждое следующее поколение компьютеров будет примерно таким же, как предыдущее, то зачем покупать новые компьютеры?

    И вообще, процессоры сейчас внедряются в самые разные предметы и приборы, и у многих людей просто не будет необходимости в домашнем компьютере. Последствия для экономики в целом могут быть поистине катастрофическими. Перестанут работать целые отрасли, миллионы людей могут потерять работу, в экономике возникнет неуправляемый хаос.

    В прошлом физики не раз указывали на неизбежный конец закона Мура, но промышленники традиционно отмахивались от наших предупреждений и говорили, что ученые, как мальчик из басни, все время кричат «Волк! Волк!». Крах закона Мура так часто предсказывали, говорили они, что мы уже ничему не верим.

    Но теперь все иначе.

    Два года назад я выступал перед сотрудниками Microsoft в штаб-квартире компании в Сиэтле, штат Вашингтон. Три тысячи лучших инженеров компании, собравшиеся в зале, ждали от меня откровений о будущем компьютеров и телекоммуникаций. В этой огромной аудитории я видел лица молодых инженеров-энтузиастов; именно эти люди создают программы, работающие потом в наших настольных и портативных компьютерах. В отношении закона Мура я сказал прямо: отрасли следует готовиться к этому краху. Лет десять назад мои слова, наверное, были бы встречены смехом и шутками. Но на этот раз я видел перед собой лишь серьезные лица и согласные кивки.

    Крах закона Мура — вопрос глобального значения; на кон здесь ставятся триллионы долларов. Но как в точности закончится действие этого закона и что именно его заменит, определят законы природы. Получается, что очень скоро ответы на чисто физические вопросы потрясут основы экономической структуры капитализма.

    Чтобы разобраться в этой ситуации, важно осознать, что всеми невероятными свершениями компьютерной революции мы обязаны нескольким физическим принципам. Во-первых, компьютеры считают с такой поразительной быстротой потому, что электрические сигналы движутся по проводам со скоростью, близкой к скорости света — абсолютному пределу для любой скорости во Вселенной. За секунду луч света способен семь раз обогнуть Землю или долететь до Луны. Кроме того, электроны несложно двигать, поскольку они не слишком прочно держатся в атоме (мы легко сдвигаем их с места, расчесывая волосы, проходя по ковру или стирая, — именно так накапливается статическое электричество). Сочетание не слишком прочных связей и молниеносной скорости позволяет нам стремительно посылать по проводам электрические сигналы, что, собственно, и породило электрическую революцию прошлого века.

    Во-вторых, количество информации, которую можно передать при помощи лазерного луча, практически ничем не ограничено. Световые волны колеблются во много раз быстрее звуковых и могут нести на себе гораздо больше информации, чем звук. (Представьте, к примеру, длинную натянутую веревку, по которой с одного конца пускают волны. Чем быстрее двигается этот конец, тем больше сигналов умещается на веревке. Поэтому количество информации, которую можно передать при помощи волны, тем больше, чем быстрее она колеблется, т. е. Чем больше ее частота.)

    Свет — это волна, у которой на одну секунду приходится примерно 1014 циклов (1014— это единица с четырнадцатью нулями). Для передачи одного бита информации (1 или 0) требуется много циклов. Это значит, что оптическое волокно может нести на одной частоте примерно 1011 бит информации. И это число можно еще увеличить, поместив в одно волокно несколько сигналов на разных частотах, а затем связав оптические волокна в единый кабель. Все это означает, что, увеличивая число каналов в кабеле, а затем и число кабелей, можно передавать информацию в почти неограниченных количествах.

    В-третьих — и это самое главное, — основой компьютерной революции является миниатюризация транзисторов. Транзистор — это ключ, или управляющий элемент, контролирующий поток электричества. Если сравнить электрический контур с водопроводом, то транзистор — это кран, управляющий потоком воды. Точно так же как простым поворотом ручки крана можно перекрыть сильный поток воды, небольшой электрический ток на управляющем входе транзистора может управлять гораздо более сильным током основной цепи и таким образом усиливаться.

    Сердце этой революции — компьютерный чип, электронная микросхема, где на кремниевой подложке размером с ноготь могут разместиться сотни миллионов транзисторов. Внутри любого современного компьютера есть микросхемы, транзисторы на которых можно разглядеть только в микроскоп. Эти невероятно крошечные транзисторы создаются примерно так же, как рисунки на футболках.

    Чтобы напечатать рисунок на тысячах футболок, сначала необходимо создать шаблон с контуром этого рисунка. Затем этот шаблон накладывают на футболку и брызгают сверху краской в виде спрея. Краска попадает на ткань только в тех местах, где на шаблоне имеются прорези. Затем шаблон убирают, и на футболке остается идеальная копия рисунка.

    Точно так же при производстве микросхем сначала изготавливается шаблон, содержащий сложные контуры миллионов транзисторов. Шаблон помещается на многослойную светочувствительную кремниевую пластину. Затем на шаблон и пластину направляют ультрафиолетовый луч; излучение проникает сквозь прорези в шаблоне и действует на кремниевую пластину.

    После этого подложку опускают в кислоту, вытравливая контуры схем и создавая хитрый рисунок миллионов транзисторов. Поскольку пластина состоит из множества проводящих и полупроводящих слоев, кислота проникает на разную глубину и вытравливает в ней различные формы; таким образом можно создавать невероятно сложные электронные схемы.

    Закон Мура так неустанно обеспечивал нам экспоненциальный рост мощности компьютеров, в частности, потому, что производители микросхем, отрабатывая технологию, постепенно уменьшали длину волны УФ-излучения, что позволяло им вытравливать на кремниевых пластинках все более и более крошечные транзисторы. Длину волны УФ-излучения можно довести до 10 нм (нанометр — это одна миллиардная часть метра), и самый маленький транзистор, который можно вытравить на подложке таким способом, будет около тридцати атомов в поперечнике.

    Но этот процесс не может продолжаться до бесконечности. В какой-то момент мы столкнемся с тем, что вытравить таким способом транзистор размером с один атом физически невозможно. Можно даже прикинуть, когда приблизительно рухнет закон Мура: в тот момент, когда дальнейшая миниатюризация потребует делать транзисторы размером с отдельный атом.

    Около 2020 г. или чуть позже закон Мура постепенно перестанет действовать; если не будет найдена новая технология, способная заменить нынешнюю и обеспечить дальнейший прогресс, Кремниевой долине грозит медленное превращение в очередной «ржавый пояс». Согласно законам природы со временем Кремниевая эра закончится и начнется Посткремниевая. Транзисторы станут такими маленькими, что на сцену выйдут квантовая теория или атомная физика — и электроны начнут уходить с проводников и просачиваться куда не положено.

    К примеру, представьте, что толщина тончайшего полупроводникового слоя в вашем компьютере достигнет пяти атомов. Этот момент, по законам природы в дело вступит квантовая теория. Принцип неопределенности Гейзенберга утверждает, что невозможно точно знать одновременно положение и скорость частицы. На первый взгляд такой принцип кажется непонятным, но на атомном уровне просто невозможно определить, где в точности находится электрон, а потому никак нельзя гарантировать, что он не выйдет за пределы ультратонкой проволоки или слоя; он непременно просочится оттуда наружу и вызовет короткое замыкание.

    Мы обсудим все это более подробно в главе 4, когда речь пойдет о нанотехнологиях. Пока же предположим, что физики нашли подходящую замену кремнию, но мощность компьютеров в новых условиях растет значительно медленнее, чем раньше. Скорее всего, экспоненциальный рост продолжится, но время удвоения мощности составит не 18 месяцев, а по крайней мере несколько лет.

    Смешение реальностей

    К середине века все мы, скорее всего, будем жить в странном мире, представляющем собой смешение настоящей и виртуальной реальности. Контактные линзы или очки позволят человеку видеть перед собой не только реальный мир, но и наложенные на него виртуальные изображения. По крайней мере так считает Сусуму Тачи (Susumu Tachi) из японского Университета Кейо и многие другие ученые. Тачи разрабатывает особые очки, способные смешать фантазию и реальность. Его первая цель сделать так, чтобы вещи могли исчезать и появляться прямо на глазах.

    Я побывал у профессора Тачи и увидел некоторые из его замечательных экспериментов по смешению настоящей и виртуальной реальности. Одна из несложных демонстраций исчезновение объекта (по крайней мере в ваших очках). Сначала я надел специальный светло-коричневый плащ, который расправлялся вокруг меня парусом, стоило развести руки в стороны. Затем на плащ навели видеокамеру, а еще одну видеокамеру поставили снимать все за моей спиной, где по улице спокойно ехали автобусы и автомобили. Мгновением позже компьютер совместил два изображения и спроецировал на мой плащ, как на экран, происходящее позади меня. Стоило посмотреть сквозь специальную линзу, и мое тело исчезало, оставляя лишь изображения машин и автобусов. Поскольку моя голова не была прикрыта плащом, выглядело все так, будто голова одна парила в воздухе без тела, как у Гарри Поттера в плаще-невидимке.

    Затем профессор Тачи показал мне совершенно особые очки. Надев их, я получил возможность видеть перед собой реальные объекты, но мог при желании заставить их исчезнуть. Это не настоящая невидимость, и работает она только для человека в специальных очках, которые накладывают два изображения. Однако это часть амбициозной программы профессора Тачи, которую иногда называют «дополненной реальностью».

    К середине века все мы будем жить в настоящем, полностью функционирующем кибермире, в котором объекты мира реального смешаны с компьютерными изображениями. В связи с этим резко изменятся, вероятно, представление человека о рабочем месте, торговля, развлечения и образ жизни. Дополненная реальность повлияет и на рынок. Первым коммерческим приложением как раз и станет возможность делать реальные объекты невидимыми или, наоборот, делать невидимое видимым.

    К примеру, если вы пилот или водитель, вы сможете видеть одновременно на 360° вокруг себя; мало того, вы будете видеть то, что находится у вас под ногами, поскольку очки или линзы позволят взгляду проникать сквозь стены самолета или автомобиля. Исчезнут «слепые» зоны, из-за которых происходит так много аварий и гибнут люди. Во время воздушного боя пилот будет видеть вражеские самолеты, где бы они ни находились, даже под собой, как если бы его самолет был полностью прозрачен. Водители тоже будут видеть всю обстановку вокруг, поскольку крошечные камеры подадут на их контактные линзы полное панорамное изображение.

    Это пригодится и астронавтам, работающим на наружной поверхности космического корабля; они смогут видеть сквозь стены, перегородки и корпус своего корабля. В какой-то момент такая технология может оказаться спасительной. Если вы занимаетесь ремонтом подземных коммуникаций, прибор покажет вам, как в точности соединяются все эти провода, трубы, краны и переключатели. Это может оказаться жизненно важным в случае взрыва газа или прорыва трубы с паром, когда скрытые в стенах трубы необходимо быстро отремонтировать или переключить.

    Если вы геолог, вы сможете видеть сквозь толщу земли подземные запасы воды или нефти. Снимки исследуемой территории в ультрафиолетовом и инфракрасном диапазонах, сделанные со спутников и самолетов, компьютер обработает и подаст на ваши линзы вместе с трехмерным анализом площадки и всего, что скрыто под ее поверхностью. Проходя по безжизненному ландшафту, в линзах вы будете «видеть» залежи ценных минералов.

    Вы сможете не только делать реальные объекты невидимыми, но и наоборот — «проявлять» и делать видимым невидимое.

    Если вы архитектор, вы сможете, не выходя из пустой комнаты, «увидеть» перед собой трехмерное изображение проектируемого здания. Вы сможете «пройтись» по его внутренним помещениям, и ваши чертежи «оживут». Дизайнер, пройдя по пустым комнатам, сможет увидеть только еще задуманные интерьеры с мебелью, коврами и украшениями на стенах; То же сможет сделать и заказчик проекта. Такая экскурсия поможет, прежде чем воплощать проект, визуализировать его и убедиться, что он полностью соответствует его пожеланиям.

    Просто взмахнув руками, дизайнер сможет создавать новые комнаты, стены и мебель. В дополненной реальности каждый станет волшебником; взмахни палочкой — и сотвори все что твоей душе угодно.

    Дополненная реальность: революция в туризме, искусстве, шопинге и войне

    Вы видите, что дополненная реальность потенциально может оказать и на торговую, и на производственную сферу огромное влияние. При помощи дополненной реальности можно облегчить выполнение и улучшить результат буквально любой работы. К тому же эта технология невероятным образом обогатит нашу жизнь, развлечения и вообще человеческое общество.

    К примеру, в музее можно будет переходить от экспоната к экспонату под руководством виртуального гида, который подробно расскажет вам о самых интересных объектах; этот же «гид» при помощи контактной линзы дополнит экспонаты в витринах интересными видеороликами и другими материалами. Вам покажут полную реконструкцию зданий и памятников во всем их величии, а заодно позабавят историческими анекдотами. Римскую империю, к примеру, вы «увидите» не в виде сломанных колонн и заросших сорняками развалин, а как будто возрожденную; сможете побродить по форуму, услышите комментарии специалистов, получите любую информацию.

    Ученые Пекинского технологического института уже делают первые шаги в этом направлении. Они воссоздали в киберпространстве легендарный Юаньминюань — Сад совершенной ясности, уничтоженный франко-британскими войсками во время Второй опиумной войны 1860 г. До наших дней от этого знаменитого ансамбля остались одни руины. Но если вы посмотрите на развалины со специальной платформы, вы увидите перед собой сад во всем его великолепии. В будущем такие зрелища станут привычными.

    Еще более продвинутую систему — пешую экскурсию по швейцарскому городу Базелю — создал изобретатель Николас Некке (Nikolas Neecke). Вы надеваете специальные очки и гуляете по улочкам древнего города; при этом одновременно с реальным изображением вы видите трехмерные изображен древних здании и даже людей. Турист вполне может вообразить себя путешественником во времени. Компьютер сам определяет ваше местонахождение и показывает вам через очки картины древних времен, как будто вы перенеслись в Средневековье. Сегодня для того, чтобы эта система работала, вам придется надеть большие очки и нести на себе тяжелый рюкзак с GPS-оборудованием и компьютерами. Завтра все это свободно уместится в контактных линзах.

    Если в чужой стране вам доведется водить машину, то в контактной линзе все приборы и надписи на панели управления вы будете видеть на своем, а не на местном языке, так что вам не придется опускать взгляд, чтобы что-то увидеть. Вы будете видеть и дорожные знаки, и, если захотите, описания близлежащих объектов, таких как туристические достопримечательности. Перевод дорожных знаков и объявлений также не составит труда.

    Турист, путешествующий пешком, сможет в любой момент узнать не только свое положение в чужой стране, но и названия всех местных растений и животных, сможет взглянуть на карту и узнать прогноз погоды. Увидит он и тропинки, скрытые растительностью, и места стоянок.

    Человек, занятый поисками подходящего жилья, проходя или проезжая в машине по улице, увидит окрест дома и квартиры, выставленные на продажу или сдающиеся внаем. Его линза покажет стоимость квартиры или дома, наличие удобств и т. п.

    Взглянув на ночное небо, вы увидите не только звезды и созвездия, но и границы между ними, как в планетарии, и названия звезд — и все это на фоне настоящего неба. Вы увидите, где находятся на небе галактики, далекие черные дыры и другие интересные астрономические объекты, сможете скачать лекции на заинтересовавшую тему.

    Дополненная реальность не только даст вам возможность видеть сквозь непрозрачные объекты и посещать экзотические места; она придет на помощь, если вам срочно потребуется какая-то специализированная информация.

    К примеру, если вы актер, музыкант или еще кто-то, кому приходится заучивать наизусть большие объемы информации в будущем вы будете видеть перед собой все необходимый текст, ноты, программу, хронометраж спектакля и т. п. Вам не потребуются ни телесуфлер, ни карточки-шпаргалки, ни бумажные ноты, ни специальные пометки с напоминаниями Вам вообще не придется больше ничего заучивать наизусть.

    Вот еще несколько примеров.


    •Если вы студент и пропустили лекцию, вы сможете скачать и просмотреть лекции виртуальных профессоров по любому предмету. Технология дистанционного присутствия сделает так, что образ реального профессора появится перед вами и ответит на все ваши вопросы. Вы также сможете увидеть в своей линзе демонстрацию различных экспериментов, видео и т. п.

    •Если вы солдат в поле, специальные очки или шлем обеспечат вас самой последней информацией, картами, схемами расположения частей противника и направлений вражеского огня, последними приказами и инструкциями командования и т. п. Во время перестрелки, когда вокруг свистят пули, вы сможете видеть позиции противника сквозь препятствия и детали рельефа, поскольку беспилотные самолеты-разведчики сверху рассмотрят и зарегистрируют их.

    •Если вы хирург, занятый тонкой и срочной операцией, вы сможете видеть пациента насквозь (при помощи портативного MPT-аппарата и датчиков, запущенных внутрь его тела). Кроме того, вы сможете в любой момент просмотреть справочные материалы, медицинские записи и видеозаписи предыдущих операций.

    •Играя в видеоигру, вы сможете при помощи своей контактной линзы погрузиться в киберпространство. Находясь в пустой комнате, вы будете видеть идеальные трехмерные изображения всех своих друзей и путешествовать по какой-то незнакомой местности, готовясь к схватке с воображаемыми инопланетянами. Вы будете ощущать себя на поле боя чужой планеты, где вокруг вас и ваших товарищей по оружию сверкают боевые лучи инопланетного оружия.

    •Если вам захочется уточнить какие-то спортивные данные или статистику выступлений определенного спортсмена, информация мгновенно появится на вашей контактной линзе.


    Это означает, что человеку уже не будут нужны ни сотовый телефон, ни часы, комнатные или наручные, ни МРЗ-плеер. Все иконки различных гаджетов, которыми вы прежде пользовались, отобразятся на вашей линзе, и компьютер обеспечит вам доступ к этим приборам в любое время. Таким образом можно будет звонить по телефону, посещать музыкальные сайты и т. п. Дополненная реальность возьмет на себя функции большей части домашней техники.

    Среди ученых, раздвигающих рамки дополненной реальности, можно назвать Пэтти Маес (Pattie Maes) из медиалаборатории MIT. Вместо того чтобы использовать особые контактные линзы или очки, она планирует проецировать экран компьютера на обычные объекты окружающего мира. Ее проект под названием SixthSense («Шестое чувство») предусматривает ношение крохотной камеры и проектора на шее в виде своеобразного медальона, способного проецировать изображение компьютерного экрана на любой подходящий предмет, к примеру на стол или стену. Нажатие воображаемых клавиш позволит активировать компьютер, в точности как если бы вы печатали на настоящей клавиатуре. А поскольку экран компьютера можно спроецировать на любую ровную и твердую поверхность, одновременно в такие экраны можно будет превратить сотни самых разных предметов.

    Кроме того, человек, пользующийся этой системой, надевает на пальцы особые пластиковые наперстки. Движения пальцев становятся командами, результат выполнения которых появляется на импровизированном экране. К примеру, вы сможете рисовать на экране движениями пальцев; сможете пользоваться пальцами вместо мышки и управлять движением курсора. А стоит сложить пальцы обеих рук «домиком», активируется цифровая камера, и вы сможете заснять все что захотите.

    Это означает также, что во время похода по магазинам ваш компьютер будет сканировать продукты, считывать информацию с упаковки и выдавать вам ее в удобном виде: это может быть полный состав продукта, калорийность (т. е. все, что написано на упаковке даже самым мелким шрифтом), а также отзывы других потребителей. А поскольку соответствующие микросхемы будут стоить дешевле, чем наклейки со штрихкодами, каждый коммерческий продукт будет снабжен собственной разумной биркой, которую сможет без труда прочесть ваш компьютер.

    Еще одним приложением дополненной реальности может стать рентгеновское зрение, очень похожее на то, которым обладал Супермен в комиксах. Ученые предполагают использовать здесь процесс, известный как обратное рассеяние рентгеновских лучей. Если получится, то при помощи очков или контактных линз, чувствительных к рентгеновскому излучению, вы, подобно героям комиксов, сможете видеть сквозь стены и другие непрозрачные объекты. Каждый ребенок, впервые познакомившись с комиксами про Супермена, мечтает стать «быстрее выпущенной пули и сильнее локомотива». Тысячи детей кутаются в плащи, прыгают с подоконников, пытаясь взлететь, и приписывают себе возможность видеть сквозь стены. Тем не менее рентгеновское зрение — не плод воображения, оно вполне может стать реальностью.

    Конечно, использование обычных рентгеновских лучей вызвало бы множество проблем. Во-первых, чтобы получить изображение, вам надо поместить позади объекта специальную пленку, облучить его, а затем эту пленку проявить. Однако обратное рассеяние позволяет решить эту проблему. Рентгеновские лучи испускаются специальным слабым источником и наполняют всю комнату; они отражаются от стен и пронизывают интересующие вас объекты с обратной стороны. Ваши очки воспринимают именно эти отраженные лучи, прошедшие сквозь объект. Изображение в них по качеству может быть ничуть не хуже, чем подобные рисунки в комиксах. (А увеличение чувствительности очков поможет снизить интенсивность рентгеновского излучения и, соответственно, минимизировать риск для здоровья.)

    Универсальные переводчики

    В фильмах «Звездный путь» и «Звездные войны», как, впрочем, практически во всех научно-фантастических фильмах, все инопланетяне прекрасно говорят по-английски[4]. В любом таком фильме существует штука под названием «универсальный переводчик», позволяющая землянам мгновенно найти общий язык с любой инопланетной цивилизацией и избавляющая от необходимости объясняться с инопланетянами при помощи жестов.

    Когда-то считалось, что универсальный переводчик — совершенно нереалистичная футуристическая идея, но первые варианты подобных приборов уже созданы. Это означает, что в будущем, если вы окажетесь в чужой стране и заговорите там с местными жителями, в ваших контактных линзах появятся субтитры, как если бы вы смотрели иностранный фильм. Вы также сможете попросить компьютер озвучить перевод и подать его непосредственно вам в уши. Два человека смогут беседовать между собой, причем каждый из них будет говорить на своем языке, а слова собеседника слышать в компьютерном переводе (если у обоих будет включен универсальный переводчик). Перевод, конечно, не будет идеальным (никуда не денутся проблемы с переводом идиом, сленга и образных выражений), но для понимания смысла сказанного его будет вполне достаточно.

    К решению проблемы универсального перевода существует несколько подходов. Во-первых, необходимо создать устройство, которое могло бы преобразовывать устную речь в письменный текст. В середине 1990-х гг. на рынке появились первые системы распознавания речи, способные понимать до 40 000 слов с 95 %-ной точностью. Если учесть, что в обычной бытовой речи используется всего лишь от 500 до 1000 слов, можно понять, что эти системы для своего времени были более чем адекватными. После того как запись с голоса готова, каждое слово следует перевести на нужный язык при помощи компьютерного словаря. Затем приходит черед самого сложного: вставить слова в контекст, при необходимости добавить сленг, разговорные выражения и т. п. Все это требует очень точного понимания языковых нюансов. Компьютерный перевод по этой технологии — целая наука, известная как CAT (computer assisted translation).

    Другой способ предложили ученые Университета Карнеги-Меллон в Питтсбурге. У них уже есть прототип, способный переводить с китайского на английский, а с английского на испанский или немецкий. Электроды, закрепленные на шее и лице говорящего, улавливают сокращения речевых мышц и расшифровывают по ним произнесенные слова. Здесь не нужен микрофон и вообще никакая аудиотехника, а слова можно проговаривать даже беззвучно. Затем компьютер переводит слова, а синтезатор речи произносит их вслух. В простых разговорах, где используется 100–200 слов, ученым удалось достичь 80 %-ной точности.

    «Идея состоит в том, что вы можете беззвучно артикулировать слова на английском, а звучать они будут на китайском или другом языке», — говорит Таня Шульц (Tanja Schultz), участник исследований. В будущем компьютер, возможно, научится читать по губам, так что и электроды не будут нужны. И можно себе представить, в принципе, оживленную беседу двух людей, говорящих на разных языках.

    В будущем языковые барьеры, так долго и трагично не позволявшие представителям разных культур понять друг друга[5], возможно, падут, и поспособствуют этому универсальный переводчик и интернет-очки (или линзы).

    Итак, дополненная реальность открывает перед нами совершенно новый мир, но в этом мире существуют свои ограничения. Проблемы не связаны с техникой, а возможности расширенной реальности не ограничены пропускной способностью канала — ведь по оптико-волоконному кабелю можно передать сколько угодно информации.

    Настоящий камень преткновения здесь — программное обеспечение. Создавать его можно только старым добрым способом — вручную. Все коды, строчку за строчкой, должен будет написать человек карандашом на бумаге или в крайнем случае на портативном компьютере; только так можно будет пробудить к жизни эти воображаемые миры. Технику можно производить в любых количествах, да и вычислительные мощности увеличивать тоже (добавляешь новые чипы — и готово!), а вот массовое производство мозгов невозможно. Это означает, что путь человечества к полномасштабной дополненной реальности будет нелегким и займет несколько десятилетий.

    Голограммы и трехмерные образы

    К середине века мы, вероятно, увидим еще одно техническое новшество — настоящее трехмерное кино и телевидение. Когда-то давно, в 1950-х гг., при просмотре трехмерного фильма вы должны были надеть неуклюжие очки с разноцветными стеклами — красным и синим. Дело в том, что человеческие глаза, правый и левый, видят чуть-чуть по-разному. На экран проецируется сразу два изображения, одно синее и одно красное. Стекла служат фильтрами, и в результате в левый и правый глаз поступает немножко разное изображение; мозг смешивает их, и возникает иллюзия объема. Восприятие глубины изображения, таким образом, создавалось искусственно. (Чем дальше друг от друга расположены глаза, тем лучше воспринимается глубина изображения. Именно поэтому у некоторых животных глаза находятся на конце гибких стебельков: так объем воспринимается лучше всего.)

    Определенный прогресс обеспечивают 3D-очки из поляризованного стекла, благодаря которым левый и правый глаз получают два разных поляризованных изображения. Таким способом можно создавать полноцветные, а не красно-синие, объемные изображения. Свет — это волна, и колебания в нем могут происходить в разных плоскостях — к примеру, в вертикальной и горизонтальной. Поляризованная линза пропускает только световые колебания определенной направленности. Так что если стекла ваших очков поляризованы в разных направлениях, вы можете создать эффект трехмерности изображения. В более сложном варианте трехмерности можно подавать разные изображения прямо на контактные линзы.

    Трехмерное телевидение, которое также нужно смотреть в очках, уже появилось на рынке. Очень скоро, однако, необходимость в очках исчезнет, их сменят двояковыпуклые линзы. Телеэкран будет специально изготавливаться таким образом, чтобы выдавать для глаз два различных изображения чуть-чуть под разными углами. Каждый глаз зрителя будет видеть свое изображение, а вместе они создадут иллюзию трехмерности. У этой системы есть свои недостатки: голова должна быть правильно расположена; каждый глаз должен находиться в предназначенной именно для него точке. (Принцип действия такого телевидения основан на хорошо известной оптической иллюзии. Иногда встречаются рекламные щиты, изображения на которых волшебным образом меняются, по мере того как мы движемся вдоль них. Делается это так. Два изображения раскладываются на множество тонких полосок, которые затем кладутся вперемешку, составляя композитное изображение. Затем это изображение накрывается своеобразной линзой — стеклянным листом с множеством вертикальных пазов, причем каждый паз размещается точно над двумя полосками. Пазы имеют такую форму, чтобы под одним углом видна была одна полоска, а под другим — другая. Поэтому, проходя мимо такой картины, мы видим, как одно изображение внезапно превращается в другое, а затем обратно. Трехмерное телевидение заменит неподвижные изображения в этой системе движущимися, и 3D-эффект будет достигаться без применения специальных очков.)

    Но самый продвинутый вариант трехмерного изображения — это голограмма. Без всяких очков человек видит точный волновой фронт трехмерного изображения, как если бы изображенный объект в реальности находился перед вами. Голограммы известны уже несколько десятилетий (их можно увидеть на выставках, открытках и кредитных карточках) и нередко мелькают в фантастических фильмах. В «Звездных войнах» завязкой сюжета служит голографический призыв о помощи, посланный принцессой Леей членам Повстанческого альянса.

    Проблема в том, что голограмму очень трудно изготовить.

    При создании голограммы лазерный луч расщепляется на два. Один луч направляется на объект, изображение которого вы хотите получить, затем отражается и попадает на специальный экран. Второй луч направляется непосредственно на экран. Смешение двух этих лучей создает на экране сложную интерференционную картину, содержащую «застывшее» трехмерное изображение объекта; это изображение закрепляется на специальной пленке, покрывающей экран. Затем, если сквозь экран пропустить другой лазерный луч, в пространстве появится настоящее трехмерное изображение объекта.

    Голографическое телевидение — довольно своеобразная вещь. Во-первых, изображение все равно должно проецироваться на экран. Сидя перед экраном, вы будете видеть точное трехмерное изображение объекта; при этом вы, естественно, не сможете протянуть руку и прикоснуться к нему. Трехмерное изображение останется лишь иллюзией.

    Это означает, что при просмотре футбольного матча по голографическому телевизору движение зрителя перед экраном вызывает соответствующее изменение изображения. Вы можете наблюдать за матчем едва ли не с середины поля, игроки будут бегать прямо перед вами. Но потянувшись за мячом, вы упретесь руками в экран.

    Однако настоящую техническую проблему, из-за которой у нас до сих пор нет голографического телевидения, представляет хранение информации. Настоящее трехмерное изображение содержит громадное количество информации, во много раз больше, чем обычное двумерное. Компьютер непрерывно обрабатывает двумерные изображения; они разбиты на крохотные точки — пиксели, и изображением каждого пикселя управляет крохотный транзистор. Но в трехмерном кино кадры должны сменяться с частотой 30 штук в секунду[6]. Несложный расчет показывает, что количество информации, необходимой для генерации движущихся трехмерных изображений, намного превосходит возможности сегодняшнего Интернета.

    К середине века эта проблема, возможно, будет решена, ведь ширина интернет-канала растет экспоненциально.

    Но на что будет похож трехмерный телевизор?

    Один из вариантов — это экран в форме цилиндра или купола, внутри которого размещается зритель. На экран проецируется голографическое изображение, и зритель оказывается в окружении объемных фигур, очень похожих на реальные.

    Далекое будущее

    (2070–2100 гг.)

    Первенство духа над материей

    К концу этого столетия мы научимся управлять компьютерами при помощи мысленных команд. У нас, как у греческих богов, будут исполняться даже невысказанные желания. Основы этой технологии уже заложены, но ее доводка и совершенствование могут занять еще не одно десятилетие. Эта революция состоит из двух частей. Во-первых, мозг должен научиться управлять объектами внешнего мира, и, во-вторых, компьютер должен научиться угадывать (и выполнять) желания хозяина.

    Первое серьезное достижение в этой области относится к 1998 г., когда ученые Университета Эмори и немецкого Университета Тюбингена поместили крошечный стеклянный электрод непосредственно в мозг парализованного после инсульта 56-летнего мужчины. Электрод был соединен с компьютером, который анализировал получаемые от мозга сигналы. Мужчина видел изображение курсора на экране компьютера и, используя искусственно созданную биологическую обратную связь, научился мысленно управлять движением курсора. Так впервые был осуществлен непосредственный контакт между человеческим мозгом и компьютером.

    Самую продвинутую версию этой технологии создал в Университете Брауна нейробиолог Джон Донохью (John Donoghue). Он разработал устройство под названием BrainGate, призванное помочь людям, пострадавшим от мозговых травм, общаться с окружающим миром. Работа произвела настоящую сенсацию, а ее автор в 2006 г. даже попал на обложку журнала Nature.

    Донохью рассказал мне, что мечтает при помощи своего прибора поставить всю мощь информационной революции на службу людям, пострадавшим от мозговой травмы, и тем самым полностью пересмотреть отношение к ним. Этот прибор уже изменил к лучшему жизнь его пациентов, и Донохью с полным основанием надеется, что ему удастся еще улучшить свою технологию. У него есть и личный интерес к этим исследованиям — в детстве из-за болезни он был некоторое время прикован к инвалидному креслу и потому знает, что такое беспомощность.

    Среди его пациентов — жертвы инсульта, люди, которые полностью парализованы и не могут общаться с близкими, но чей мозг по-прежнему активен. Донохью помещает крохотный чип размером 4 мм на поверхность мозга пациента в зоне, отвечающей за двигательную функцию. Чип подключают к компьютеру, который принимает с него сигналы, обрабатывает их и передает по беспроводной связи на лэптоп.

    Поначалу пациент не может управлять положением курсора, но видит, где он находится и куда движется. Методом проб и ошибок пациент учится контролировать курсор и, как правило, уже через несколько часов может подвести его к любому месту на экране. После некоторой практики пациент получает возможность пользоваться электронной почтой (читать и писать письма), а также играть в видеоигры. В принципе, парализованный человек получает возможность выполнять любые действия, которыми может управлять компьютер.

    Вначале у Донохью было четыре пациента: двое с травмой позвоночника, один после инсульта и еще один с боковым амиотрофическим склерозом. Один из них, полностью парализованный ниже шеи молодой человек сумел освоить управление курсором всего за день. Сейчас он может управлять телевизором, перемещать курсор на экране компьютера, играть в видеоигру и читать электронную почту. Кроме того, пациенты в состоянии управлять моторизованным креслом и, соответственно, передвигаться.

    Если говорить о столь кратком временном промежутке, то перемены, которые произошли с этими людьми, нельзя назвать иначе как волшебными. Еще вчера они были бессловесными пленниками собственного тела, а сегодня уже гуляют по Сети и беседуют с людьми по всему миру.

    (Мне довелось однажды присутствовать в нью-йоркском Линкольн-центре на праздничном приеме в честь великого космолога Стивена Хокинга. Очень тяжело видеть, как страдает этот человек. Он не может двигать ничем, кроме нескольких лицевых мускулов и век, и медсестрам приходится не только водить по залу его кресло, но и поддерживать его голову, которую мышцы уже не держат. Изложение даже самых простых мыслей при помощи голосового синтезатора требует от Хокинга часов и даже дней мучительных усилий. Я сразу вспомнил о приборе Донохью и подумал, что Хокингу, наверное, еще не поздно воспользоваться преимуществами технологии BrainGate. И тут же ко мне подошел поздороваться сам Джон Донохью, тоже присутствовавший в зале. Так что, возможно, BrainGate был бы для Хокинга наилучшим вариантом.)

    Другая группа ученых из Университета Дьюка добилась аналогичных результатов в опытах с обезьянами. Мигель Николелис (Miguel A. L. Nikolelis) и его группа вживили чип в мозг обезьяны и подключили его к механической руке — манипулятору. Поначалу обезьяна беспорядочно размахивает рукой, не понимая, как ею управлять. Но затем, после некоторой практики, она постепенно осваивает управление и начинает медленно двигать манипулятор в нужном направлении — к примеру, чтобы взять банан. Обезьяна двигает механической рукой инстинктивно, не думая, как своей собственной. «Некоторые физиологические признаки указывают на то, что во время эксперимента обезьяна ощущает себя связанной больше с роботом, чем с собственным телом», — говорит Николелис.

    Это означает также, что когда-нибудь мы сможем управлять самыми разными машинами при помощи мысленных команд. Не исключено, что парализованные люди смогут таким образом управлять механическими ногами и руками. Представьте, к примеру, что ученым удастся подсоединить механические руки и ноги к головному мозгу напрямую, минуя спинной мозг; пациент снова сможет ходить. Возможно, это будут первые шаги к мысленному управлению миром.

    Чтение мыслей

    Если при помощи мысленных усилий можно управлять компьютером или манипулятором, то сможет ли когда-нибудь компьютер читать мысли человека без вживления в мозг электродов?

    Еще в 1875 г. ученые выяснили, что в основе работы мозга нежит прохождение электрического тока по нейронам мозга; при этом возникают слабые электрические сигналы, которые можно даже измерить, если разместить вокруг головы испытуемого несколько электродов. Проанализировав сигналы с электродов, можно записать излучаемые мозгом электромагнитные волны. Этот процесс носит название электроэнцефалографии (ЭЭГ) и позволяет регистрировать серьезные изменения мозговой деятельности: можно понять, когда человек спит, заметить изменения в его настроении — возбуждение, гнев и т. п. Результат обработки ЭЭГ и врач, и пациент могут видеть на экране компьютера. Через некоторое время пациент понимает, что может силой мысли изменять картинку на экране. Нильс Бирбаумер (Neils Birbaumer) из Университета Тюбингена уже разработал методику, при помощи которой обучает частично парализованных людей набирать на компьютере таким способом простые предложения.

    Даже производители игрушек спешат воспользоваться наработками ученых в этой области. Так, уже несколько компаний, в том числе NeuroSky, выпустили на рынок головную повязку со встроенным в нее электродом по типу аппаратов ЭЭГ. Если вы наденете эту повязку на голову и определенным образом сосредоточитесь, вы сможете активировать прибор и с его помощью управлять какой-нибудь игрушкой. К примеру, можно силой мысли поднимать пластмассовый шарик для пинг-понга в прозрачном цилиндре.

    Преимущество аппарата ЭЭГ в том, что он может быстро, без сложного и дорогого оборудования распознавать различные частоты, излучаемые мозгом. Но есть и серьезный недостаток: ЭЭГ не может локализовывать сигналы, т. е. определять, в какой именно зоне мозга они возникают.

    Функциональная магнитно-резонансная томография (ФМРТ) — гораздо более чувствительный метод. Принципы Действия ЭЭГ и ФМРТ принципиально различны. Электроэнцефалограф — это пассивное устройство, которое лишь воспринимает электрические сигналы мозга, и определить по ним точное местоположение источника затруднительно. Аппарат ФМРТ активен — он использует «эхо» от излучаемых им радиоволн, чтобы заглянуть внутрь живой ткани. Это позволяет точно определить место, откуда исходят различные сигналы, и получить очень наглядное трехмерное изображение тканей мозга, в том числе его внутренних участков.

    Аппарат ФМРТ — дорогое удовольствие, для его работы требуется целая лаборатория, полная дополнительного оборудования, но результат того стоит. Мы получаем подробную информацию о том, как работает думающий мозг. Томография позволяет ученым выявить присутствие кислорода в гемоглобине, а поскольку кислород в гемоглобине — это энергия, необходимая клетке для работы, увидеть воочию ток кислорода означает проследить за течением мыслей в человеческом мозге.

    Психиатр из Университета Калифорнии в Лос-Анджелесе Джошуа Фридман (Joshua Freedman) говорит: «Мы сейчас как астрономы в XVI в. после изобретения телескопа[7]. На протяжении тысяч лет очень умные люди пытались разобраться в том, что происходит в небесах, но смотрели только невооруженным глазом, а об остальном могли лишь догадываться. Затем вдруг появляется новая технология, которая позволяет им непосредственно разглядеть все, что там есть».

    Функциональная магнитно-резонансная томография позволяет видеть движение мыслей в живом мозге с разрешением 0, 1 мм, т. е. меньше булавочной головки; в такую точку укладывается, пожалуй, несколько тысяч нейронов. Таким образом, томограф с поразительной точностью выдает трехмерную картину потоков энергии в работающем мозге. Со временем, возможно, появятся аппараты ФМРТ, способные разглядеть отдельный нейрон, а значит, расшифровать нейронные схемы, соответствующие конкретным мыслям.

    Недавно Кендрик Кей (Kendrick Kay) и его коллеги из Университета Калифорнии в Беркли совершили настоящий прорыв. Они исследовали функциональную томограмму мозга людей в то время, как они смотрели на изображения различных объектов: еды, животных, людей, обычных предметов разных цветов. Кей и его коллеги создали компьютерную программу, которая пыталась соотнести объекты, на которые смотрели испытуемые, с соответствующими рисунками томограммы. Чем больше различных объектов разглядывали испытуемые, тем лучше удавалось программе идентифицировать их по томограмме.

    Затем исследователи показывали испытуемым изображение совершенно нового объекта; интересно, что во многих случаях программа смогла корректно соотнести этот объект с соответствующей картиной ФМРТ. Получив 120 изображений новых объектов, компьютерная программа в 90 % случаев корректно соотнесла их с томограммами. Из 1000 новых изображений программа успешно опознала 80 %.

    Кей говорит, что «возможно выбрать из большого набора совершенно незнакомых естественных изображений то, на которое в данный момент смотрит испытуемый… Не исключено, что скоро можно будет реконструировать картину перед глазами испытуемого по одним только данным о работе его мозга».

    Цель этих исследований — создать «словарь мыслей» и поставить в соответствие каждому объекту конкретный ФМРТ-паттерн. Тогда по паттерну можно будет определить, о чем человек думает. Не исключено, что со временем компьютер научится получать от мыслящего мозга и расшифровывать тысячи ФМРТ-паттернов, получая представление о потоке сознания данного человека.

    Сфотографировать мечту

    Проблема этой технологии, однако, заключается в том, что, даже если вы сможете с ее помощью определить, что человек думает о собаке, образ конкретной собаки, о которой он думает, вы получить не сможете. В настоящее время возникло новое направление исследований, которое в случае успеха позволит реконструировать изображение мыслеобразов. Представляете — видеофильм человеческих мыслей! Если так пойдет, в будущем можно будет сделать вполне материальную видеозапись мечты.

    С незапамятных времен человека удивляли и притягивали сны — эфемерные образы, которые иногда так трудно вспомнить или понять. Голливуд давно придумал машины, способные посылать сновидения в мозг человека или даже записывать те, что возникают естественно, как в фильме «Вспомнить все». Все это, однако, чистая выдумка. Точнее, было таковой до недавнего времени.

    Ученые добились замечательного прогресса в решении задачи, которая прежде считалась нерешаемой: сфотографировать воспоминание и, может быть, сон. Первые шаги в этом направлении сделали ученые Лаборатории вычислительной неврологии в Киото. В ходе эксперимента они показывали испытуемым точечный источник света в определенном месте, а затем по функциональной томограмме определяли, где в мозгу откладывается эта информация. Затем источник сдвигали и определяли, куда легла информация об этом новом изображении. Постепенно возникала карта с указанием точного места хранения информации о нескольких десятках световых точек. Для начала ученые взяли матрицу 10х10 точек.

    После этого испытуемому показали изображение простого объекта, составленного из этих точек, к примеру подковы. Компьютер проанализировал, как легла в мозгу эта информация. Выяснилось, что возникший в мозгу паттерн полностью соответствует сумме точек, составляющих подкову.

    Таким образом, ученые получили возможность определять, что «видит» мозг. По томограмме компьютер может восстановить любой световой паттерн в пределах матрицы 10х10.

    В будущем ученые рассчитывают увеличить количество пикселей в матрице. Более того, они утверждают, что этот процесс универсален, т. е. что визуальную мысль или даже сновидение можно, по идее, однозначно восстановить при помощи аппарата ФМРТ. Если это действительно так, то когда-нибудь ученые смогут — впервые в истории — записать образы, которые мы видим во сне.

    Конечно, мысленные визуальные образы, и тем более сновидения, никогда не бывают кристально четкими, и определенная нерезкость изображения всегда останется, но замечателен сам факт: мы сможем увидеть образы, которыми мыслим, и даже заглянуть глубоко в подсознание.

    Этично ли чтение мыслей?

    Здесь возникает серьезная проблема. Что произойдет, если мы научимся без труда читать чужие мысли? Нобелевский лауреат Дэвид Балтимор (David Baltimore), бывший президент Калифорнийского технологического института, очень обеспокоен этим вопросом. Он пишет: «Можем ли мы вторгаться в чужие мысли?.. Я не думаю, что это чистая фантастика, но чтение мыслей превратит этот мир в чертовски неуютное место. Представьте, как будут выглядеть ухаживания, если мысли перестанут быть тайной, или во что превратятся деловые переговоры».

    В большинстве случаев, рассуждает Балтимор, чтение мыслей заставит кое-кого смутиться, но не приведет к катастрофическим последствиям. Он пишет: «Говорят, что если остановить лекцию какого-нибудь профессора на полуслове… то окажется, что значительная доля [студентов] погружена в эротические фантазии».

    Но может быть, чтение мыслей и не вызовет таких серьезных проблем, ведь наши мысли зачастую очень слабо оформлены. Не исключено, что когда-нибудь мы научимся фотографировать мечты и сновидения, но качество картинок, скорее всего, нас разочарует. Много лет назад я читал фантастический рассказ, где некий дух сказал человеку, что тот может получить все, что сумеет вообразить. Человек начал воображать всевозможные предметы роскоши — лимузины, миллионы долларов наличными, старинный замок. Дух, верный своему слову, материализовал все это. Но, внимательно присмотревшись, человек был потрясен: у лимузина не оказалось ни дверных ручек, ни двигателя, лица на долларовых купюрах расплылись, а замок был абсолютно пуст. В спешке он забыл о том, что образы вещей существуют в нашем воображении лишь в самых общих чертах.

    Более того, мысли вряд ли удастся читать на расстоянии. Все методы, опробованные на данный момент (в том числе ЭЭГ, ФМРТ и наложение электродов непосредственно на мозг), требуют тесного контакта с объектом.

    И все же когда-нибудь, вполне возможно, будут приняты законы, строго ограничивающие неавторизованное чтение мыслей. А может быть, появятся приборы, способные наши мысли защитить — заглушить, заблокировать или зашифровать исходящие из мозга электрические сигналы.

    До настоящего чтения мыслей еще очень далеко. Но в самом крайнем случае даже обычный ФМРТ-аппарат может выступить в роли примитивного детектора лжи. Ложь «зажигает» в мозгу больше центров активности, чем правда. Ложь предполагает, что вы знаете правду, но думаете о лжи и пытаетесь удержать в голове все ее бесконечные следствия; энергии на это тратится значительно больше, чем на то, чтобы сказать правду. Аппарат ФМРТ, по идее, должен без труда засечь дополнительный расход энергии. В настоящее время ученое сообщество не спешит выпускать в мир детекторы лжи на базе ФМРТ и особенно опасается использования их в суде. Технология еще слишком нова, чтобы гарантировать достоверность результатов. Сторонники метода говорят, что необходимы дальнейшие исследования и повышение точности метода. Однако тот факт, что эта технология пришла и останется с нами, не вызывает сомнений.

    Две коммерческие компании уже предлагают детекторы лжи, основанные на технологии ФМРТ, и обещают надежность свыше 90 %. Данные, полученные при помощи такого детектора, уже фигурировали на одном судебном процессе в Индии, а в настоящее время в судах США слушается еще несколько таких дел.

    Обычные полиграфы не измеряют ложь; они всего лишь фиксируют признаки нервного напряжения, такие как усиленное потоотделение (измеряемое по проводимости кожи) и ускоренное сердцебиение. Томограмма мозга зафиксирует усиление мозговой активности, но связь между этой активностью и ложью еще придется доказывать в суде.

    На определение точности и пределов применимости ФМРТ-детекторов могут потребоваться годы тщательных экспериментов. А пока Фонд Макартура выделил грант в 10 млн долларов на проект «Право и неврология», который должен определить, как развитие неврологических наук повлияет на законоприменительную практику.

    Моя томограмма

    Мне однажды довелось подвергнуться процедуре ФМРТ-сканирования. При подготовке документального фильма для канала BBC/Discovery Channel я специально для этого летал в Университет Дьюка. Там меня уложили на специальную кушетку, которую затем задвинули в гигантский металлический цилиндр. Включился огромный мощный магнит (в 20 000 раз более мощный, чем магнитное поле Земли), и атомы моего мозга выстроились по силовым линиям магнитного поля, подобно вращающимся волчкам, все оси которых указывают в одном направлении. Затем в мозг был направлен радиоимпульс, который перевернул ядра некоторых атомов вниз. Переворачиваясь обратно, в нормальное положение, эти ядра испустили крохотный импульс, или «эхо», принятый аппаратом ФМРТ. Компьютер обработал информацию о принятых эхо-импульсах и собрал из них трехмерную карту моего мозга.

    Весь процесс проходит совершенно безболезненно и не причиняет никакого вреда. В MPT-аппаратах используется неионизирующее излучение; оно не разрушает атомов и, соответственно, не наносит вреда клеткам. Даже находясь в магнитном поле, в тысячи раз превосходящем по мощности магнитное поле Земли, я не чувствовал в своем теле ни малейших изменений.

    Целью этой процедуры было определить в точности, где в моем мозгу возникают те или иные мысли. В частности, в мозгу есть крохотные биологические «часы» — между глазами, позади переносицы, где мозг отсчитывает секунды и минуты. Повреждение этой части мозга вызывает нарушение чувства времени.

    Когда я находился внутри аппарата, меня попросили посчитать время. Позже, когда MPT-снимки были проявлены, я ясно увидел яркую точку позади переносицы — там шел подсчет секунд. Я понял, что стал свидетелем зарождения совершенно новой области биологии; эта наука может определить, какие в точности области мозга связаны с определенными мыслями, а это уже реальный шаг на пути к настоящему чтению мыслей.

    Трикордеры и портативные сканеры мозга

    в будущем MPT-аппараты, вероятно, перестанут быть чудовищными устройствами, которые мы сегодня видим в больницах, — они уже не будут весить по несколько тонн и занимать Целые комнаты. Не исключено, что когда-нибудь будет создан MPT-аппарат размером с сотовый телефон, а может быть, и с мелкую монетку.

    В 1993 г. Бернхард Блюмих (Bernhard Bliimich) и его коллеги из Института полимерных исследований Общества Макса Планка в немецком Майнце выдвинули новую идею, которая может оказаться очень полезной в создании портативных МРТ-аппаратов. Они изобрели принципиально новый аппарат, получивший название MOUSE (mobile universal surface explorer)[8]. В настоящее время это ящик высотой около 30 см, но когда-нибудь MPT-аппараты размером с кофейную чашку, основанные на этом принципе, возможно, будут продаваться в обычных универмагах. Это может произвести в медицине настоящую революцию — ведь каждый сможет спокойно сделать себе МРТ-скан дома. Блюмих считает, что недалеко то время, когда у каждого человека будет личный MOUSE и, проведя им по коже, он в любой момент сможет заглянуть внутрь своего организма. Компьютеры проанализируют полученную картину и поставят диагноз. «Возможно, что-то похожее на трикордеры из „Звездного пути“ появится уже совсем скоро», — заключает он.

    (Принцип магнитно-резонансной томографии схож с принципом действия компаса. Как известно, стрелка компаса устанавливается вдоль линий магнитного поля. Когда тело помещают в аппарат МРТ, ядра атомов, подобно стрелкам крохотных компасов, тоже выстраиваются вдоль линий магнитного поля. В тело направляют радиоимпульс, который заставляет атомы переворачиваться. Затем перевернувшиеся атомы начинают возвращаться в первоначальное положение, испуская вторичный радиоимпульс — так называемое «эхо».)

    Ключевая особенность MPT-аппарата Блюмиха — неоднородное магнитное поле. Размеры обычного МРТ-аппарата определяются в основном тем фактом, что тело человека в нем необходимо поместить в абсолютно однородное магнитное поле. Чем однороднее поле, тем более детальным получается изображение; на сегодняшний день разрешение такого аппарата доходит до десятых долей миллиметра. Чтобы получить однородное магнитное поле, физики взяли две большие электрические катушки диаметром около 60 см и поставили друг над другом. Такая конструкция, известная как катушка Гельмгольца, создает между двумя обмотками однородное магнитное поле. Тело человека помещают в поле вдоль оси этих двух мощных электромагнитов.

    Если магнитное поле в MPT-аппарате будет неоднородным, изображение получится искаженным и нерезким. Создатели MPT-аппаратов сражаются с проблемой однородности поля уже несколько десятков лет.

    Блюмих предложил остроумный способ компенсировать искажения — посылать в исследуемый объект множественные радиоимпульсы и затем обрабатывать полученное эхо при помощи компьютеров, которые очищают изображение и компенсируют искажения, возникшие из-за неоднородности магнитного поля.

    Сегодня в портативном MPT-аппарате Блюмиха MOUSE используется небольшой подковообразный магнит, в котором полюса располагаются на концах подковы. Этот магнит кладется на тело пациента; передвигая его, врач может заглянуть внутрь организма на несколько дюймов. В отличие от обычных MPT-аппаратов, которые потребляют большое количество энергии и нуждаются в специальном электропитании, портативный аппарат MOUSE требует не больше мощности, чем обычная электрическая лампочка.

    В первых экспериментах Блюмих испытывал свой аппарат на автомобильных шинах, плотных и в то же время податливых, как ткани человеческого тела. Кстати говоря, это подсказало ему возможность коммерческого применения прибора для быстрого выявления дефектов структуры в различных промышленных изделиях. Традиционные MPT-аппараты невозможно использовать для исследования объектов, содержащих металл, таких как армированные шины. Портативный MPT-аппарат не имеет таких ограничений, потому что использует только слабые магнитные поля. (Магнитное поле традиционного МРТ-аппарата в 20 000 раз мощнее магнитного поля Земли. Известны случаи, когда медсестры или техники, обслуживающие аппарат, получали серьезные травмы от металлических предметов, которые при включении аппарата внезапно взлетают в воздух. У MOUSE таких проблем нет.)

    Аппарат такого типа не только идеален для исследования объектов, содержащих ферромагнетики, но и позволяет анализировать крупные объекты, которые просто не войдут в традиционный MPT-аппарат или которые невозможно сдвинуть с места. К примеру, в 2006 г. при помощи аппарата MOUSE было успешно проведено исследование древнего человека Этци, замороженный труп которого был случайно обнаружен в Альпах в 1991 г. Проводя подковообразным магнитом над телом Этци, ученые смогли внимательно рассмотреть разные слои его замороженного тела.

    В будущем MOUSE, вероятно, станет еще миниатюрнее, а MPT-сканирование мозга можно будет проводить аппаратом размером с сотовый телефон. Не исключено, что чтение мыслей при этом тоже перестанет быть проблемой. А может быть, удобнее будет сделать прибор, похожий на современный ЭЭГ-аппарат, где пациенту надевают на голову пластиковую шапочку с множеством электродов, закрепленных в нужных местах.

    Телекинез и божественное могущество

    Конечным пунктом описываемого процесса должно стать овладение телекинезом — «божественной» способностью передвигать объекты силой мысли.

    В фильме «Звездные войны», к примеру, присутствует сила — загадочное поле, пронизывающее галактику и помогающее активизировать ментальные возможности рыцарей-джедаев; Сила позволяет им мысленно управлять самыми разными объектами. При помощи Силы можно поднимать в воздух световые мечи, лучевые ружья, даже целые космические корабли; мало того, можно управлять действиями других людей.

    Но нам не придется лететь в далекую-далекую галактику, чтобы овладеть аналогичными возможностями. К 2100 г. каждый человек сможет, войдя в комнату, отдать мысленную команду компьютеру; при помощи таких команд можно будет делать многое: передвигать тяжелую мебель, приводить в порядок рабочий стол, что-то ремонтировать и т. п. Подобные возможности определенно пригодятся рабочим, пожарным, астронавтам и солдатам — всем тем, кому приходится управляться со сложной техникой и проделывать операции, требующие больше двух рук. Способности к мысленному управлению могут также серьезно изменить способ нашего общения с миром. Ездить на мотоцикле, водить машину, играть в гольф, бейсбол или другие сложные игры можно будет исключительно силой мысли.

    Двигать объекты силой мысли можно будет при помощи так называемых сверхпроводников, о которых мы поговорим подробнее в главе 4. К концу этого столетия физикам, возможно, удастся создать сверхпроводники, сохраняющие свои свойства при комнатной температуре; если получится, в распоряжении ученых окажутся мощнейшие магнитные поля, для управления которыми нужно совсем немного энергии. Если XX в. был веком электричества, в будущем нас, вероятно, ожидает век магнетизма.

    В настоящее время создавать и поддерживать мощные магнитные поля очень дорого, но в будущем они, возможно, станут почти бесплатными. Это позволит нам резко уменьшить трение во всех механизмах, преобразовать транспорт и исключить потери электричества при передаче на большие расстояния. Кроме того, овладение магнитными силами позволит нам двигать предметы силой мысли. Предметы, содержащие крохотные сверхмагниты, можно будет двигать практически как угодно.

    В ближайшем будущем мы привыкнем к тому, что в каждой вещи присутствует крохотный чип, который делает эту вещь «умной». В более отдаленном будущем нам, вероятно, придется привыкнуть к тому, что в каждой вещи есть крохотный сверхпроводник, генерирующий при необходимости достаточно магнитной энергии, чтобы вещь эта могла самостоятельно передвигаться в пределах комнаты. Представим, к примеру, стол со сверхпроводником внутри. В обычных условиях в этом сверхпроводнике нет электрических токов. Но если добавить слабый электрический ток, сверхпроводник создаст мощное магнитное поле, способное сдвинуть стол с места. Человеку достаточно будет отдать мысленную команду и активировать сверхмагнит.

    В фильмах «Люди Икс», к примеру, мутантами-злодеями руководит Магнето, способный управлять движением громадных объектов при помощи воздействия на их магнитные свойства. В одной из сцен фильма он силой мысли передвигает с места на место мост Золотые Ворота. Но и его возможности ограничены. К примеру, ему трудно двигать пластик или бумагу, не обладающие магнитными свойствами. (В финале первого фильма Магнето сажают в камеру, сделанную полностью из пластика.)

    В будущем даже немагнитные предметы, возможно, будут содержать в себе сверхпроводники, сохраняющие свойства при комнатной температуре. Тогда достаточно будет включить внутри объекта слабый ток, чтобы он приобрел магнитные свойства и стал подвержен действию внешнего магнитного поля, которое человек будет мысленно контролировать.

    Кроме того, мы получим возможность манипулировать роботами и аватарами посредством мыслей. Это значит, что человек, как в фильмах «Суррогаты» и «Аватар», сможет не только мысленно управлять движением искусственного тела, но даже чувствовать боль и прикосновения. Владение вторым телом, обладающим сверхчеловеческими возможностями, может оказаться полезным для ремонтных работ в открытом космосе или спасения людей в чрезвычайных ситуациях. Когда-нибудь, возможно, наши астронавты смогут, находясь на Земле, управлять сверхчеловеческими роботизированными телами, работающими на Луне. Об этом речь пойдет в следующей главе.

    Однако следует отметить, что обладание телекинетическими возможностями несет в себе определенный риск. Как я уже упоминал, в фильме «Запретная планета» древней цивилизации, обогнавшей нашу на миллионы лет, удается исполнить вековую мечту и обрести способность управлять всем вокруг при помощи мысленного усилия. В качестве простого примера такой технологии в фильме фигурирует машина, которая превращает мысли в трехмерные изображения. Вы надеваете на голову специальное устройство, воображаете что угодно, и внутри машины возникает трехмерное изображение. Конечно, зрителям 1950-х гг. подобное устройство представлялось невероятно продвинутым, почти волшебным, но на самом деле что-то подобное вполне может появиться на Земле через несколько десятков лет. Кроме того, в фильме фигурировало устройство, которое помогало поднимать тяжелые объекты при помощи энергии мысли. Но нам, как вы уже знаете, не придется миллионы лет ждать создания подобной технологии — игрушки, в которых реализовано что-то похожее, уже существуют. Вы надеваете на голову электроды (примерно такие же, какие нужны для снятия электроэнцефалограммы), игрушка улавливает электрические импульсы вашего мозга и по мысленной команде поднимает объект, хотя и крошечный, — в точности как в кино. В будущем во многие игры можно будет играть мысленно. Игроки, возможно, будут надевать специальные приборы и двигать мяч мысленным усилием; команда, игроки которой смогут лучше сосредоточиться и точнее двигать мяч, выиграет.

    Однако кульминация фильма «Запретная планета» заставит задуматься. Несмотря на продвинутые технологии, инопланетяне погибли, потому что не заметили изъяна в своих планах. Их мощные устройства научились читать не только осознанные мысли, но и подсознательные желания. На свет выползли древние, дикие, давно подавленные мысли и желания жестокого эволюционного прошлого, а машины воплотили в реальность все эти подсознательные кошмары. Могучая цивилизация погибла от «рук» той самой техники, которая, по идее, должна была полностью освободить их от ручного труда.

    Правда, для нас эта опасность пока еще очень далека. Устройства подобного размаха наверняка не появятся раньше XXII в. Однако существуют и более актуальные поводы для тревоги. К 2100 г. человек будет жить в мире, населенном человекоподобными роботами. Что произойдет, если роботы станут умнее своих создателей?


    Примечания:



    2

    При наличии доступа к военным сигналам типа P/Y. При использовании только гражданского сигнала среднеквадратичная ошибка составляет порядка 2, 5 м. — Прим. пер.



    3

    Основой определения координат пользователя является измерение не частотных сдвигов, а лишь времени прохождения сигналов от нескольких спутников, находящихся на разных (но известных в каждый момент) расстояниях от него. Для определения трех пространственных координат в принципе достаточно обработать сигналы от четырех спутников, хотя обычно приемник «берет в расчет» все исправные спутники, которые он слышит в данный момент. Существует также более точный (но и более сложный в реализации) метод, основанный на измерении фазы принимаемого сигнала. — Прим. пер.



    4

    Или на другом земном языке, в зависимости от того, где снят фильм. — Прим. пер.



    5

    Но никуда не денется разница в восприятии мира и в жизненном опыте, заставляющая людей реагировать по-разному на одну и ту же ситуацию, ставшую понятной им из разговора. — Прим. пер.



    6

    В принятом в России стандарте — 25 кадров в секунду. — Прим. пер.



    7

    Первые телескопы были построены в начале XVII в. — Прим. пер.



    8

    Название обыгрывает английское слово mouse — мышь. — Прим. пер.








    Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке