• ВОЗРОЖДЕНИЕ
  • НОВЫЕ ИСТОЧНИКИ
  • МИР МИНЕРАЛОВ
  • МИР АТОМОВ
  • В НАШИ ДНИ
  • ЕЩЕ О ПРИМЕНЕНИЯХ
  • КОЕ-ЧТО О ПРЕДЫСТОРИИ, ПОДДЕЛКАХ И ЗАПРЕТАХ
  • НАСТОЯЩЕЕ

    ВОЗРОЖДЕНИЕ

    Великая Октябрьская революция покончила с частной собственностью на землю, сделала ее общенародным достоянием. Ленинские декреты «О земле» (8 ноября 1917), «О социализации земли» (19 февраля 1918), «О недрах земли» (30 апреля 1920) аннулировали права частных лиц и обществ не только на поверхность земли, леса и воды, но и на ее глубины («Все недра земли… переходят в исключительное пользование Государства»).

    Для практического осуществления этого была объявлена национализация горной промышленности. Ее начали осуществлять в июле 1918 года с предприятий, добывающих важнейшие полезные ископаемые, в их число была включена и платина. О том, какое значение ей придавалось, можно судить по тому, что В. И. Ленин в «Наброске плана научно-технических работ», составленном в напряженнейшей обстановке апреля 1918 года, среди неотложных дел отметил необходимость создать Институт платины и других благородных металлов.

    Это указание было сразу же выполнено Академией наук, и в Петрограде начал работать новый институт, призванный решать проблемы наиболее рационального использования платиновой руды, совершенствовать методы ее обработки, создавать новые сплавы, сокращающие расходование драгоценных металлов.

    Директором института назначили профессора А. А. Чугаева, получившего мировую известность исследованием комплексных соединений платиноидов. К работе были привлечены лучшие специалисты, и первоочередную задачу на пути избавления от иноземной зависимости — усовершенствовать технологию и ускорить ввод в действие аффинажного завода в Екатеринбурге — удалось решить быстро.

    Значительно труднее оказалось наладить работу национализированных приисков. Руководство ими возглавили выборные органы — приисковые комитеты и деловые советы, в которых объединились сторонники новой власти. Встретили они ожесточенное сопротивление бывших хозяев и их подручных.

    В предвоенные годы на крупных платиновых приисках работало примерно 20 драг (первая из них, а точнее сразу две — вскрышная и промывочная — были смонтированы в долине реки Исы в 1901 году). С помощью драг добывалось 30–40 процентов всей платины.

    После национализации драги часто и надолго выходили из строя, известно немало случаев умышленных поломок, а также устранения нужных специалистов. На мелких приисках, в старательских артелях, где обходились без сложной механизации, работы продолжались, но пользы от этого для государства было мало.

    Вот как охарактеризована обстановка в рапорте, представленном Горной коллегии в июне 1918 года: «…некоторые лица с целью подрыва доверия к власти советов подстрекают рабочих, что это все ваше, хозяйничайте… имея в виду свои корыстные цели и не учитывая государственной важности, малоразвитые старатели поддавались влиянию подстрекателей… подкапываются под дома, фабрики, плотины и проч… шоссейные дороги ископаны… приведены в невозможный вид для проезда… Замечается тенденция выживать всех старых лиц администрации, которые противятся чудовищному хищничеству…»

    Еще большую опасность представляла утайка намытой платины. По заключению специалистов, «близко стоящих к приисковому делу», старатели сдавали тогда в государственные приемные пункты не более 20 процентов добытой платины, а вся остальная уходила тайно по цепочке скупщиков и перекупщиков к иностранным агентам, теперь уже в основном через Владивосток и Харбин. Имеются сведения о том, что немецкая разведка пыталась организовать скупку платины на Урале с помощью военнопленных, которые там работали. Скупщики платили в 2–4 раза дороже официальной цены, особенно много за «светлую» платину (к «темной» относились с недоверием: продавцы в нее часто подмешивали истолченный вольфрамит).

    Тайная продажа платины и хищнические методы ведения работ приобретают такие масштабы, что 2-й съезд по управлению национализированными предприятиями Урала особо отметил: «В приисковом хозяйстве сделано меньше всего для улучшения производства и организации дела на демократических началах». Было решено применить для борьбы с «особым типом» старателей, дезорганизаторов и хищников по природе, совершенно не подходящих для социалистического строительства, «решительные меры — карать по суду военного времени за обкрадывание казны».

    Осенью 1918 года центральные ранены Урала захватили белые. Лишь через год армия Колчака была вытеснена с Урала. Отступая, колчаковцы портили оборудование фабрик и карьеров, увозили с собой чертежи и документы, необходимые для возобновления работ. Только часть этих документов вместе с 13 пудами платины удалось вернуть после разгрома колчаковцев у Томска.

    События в России отразились на мировом платиновом рынке дальнейшим ростом цен. В Колумбии, а также в других странах, где добыча платины была попутной форсировали работы, применяли драги, но и это больших успехов не принесло.

    Сенсацией прозвучала весть о том, что на знаменитых алмазных месторождениях в Южной Африке кимберлиты[10] богаты не только алмазами, но и платиной, которая тонко распылена и оставалась незамеченной.

    Сразу же в 1920 году возникла компания «African platinum», она начала переработку отвалов алмазных копей и сулила огромную прибыль всем, кто приобретет ее акции. Закончилось все это бесславно, содержание платины оказалось сильно преувеличенным, а трудности ее извлечения сильно преуменьшенными.

    По-прежнему единственным крупным источником оставались уральские россыпи, и бизнесменам от платины оставалось одно — попытаться восстановить свои позиции в России. С этой целью в 1922 году не без участия все той же фирмы «Джонсон, Маттей и K°» была организована в Лондоне «Anglo-Ural Platinum Trust Co., Limited» (последние три слова этого названия для людей, далеких от биржевых дел, требуют пояснения; означают они примерно «компания на доверии с ограниченной ответственностью»). Эта компания энергично пыталась войти в доверие и получить в концессию уральские россыпи. Успеха она не достигла.

    Подписанные В. П. Лениным декрет Совета Народных Комиссаров «О золотой и платиновой промышленности» (31 октября 1921) и постановление Совета Труда и Обороны «Об объединении государственных платиновых предприятий» (2 февраля 1922) показывают, какие энергичные меры предпринимались советским правительством для возрождения добычи драгоценных металлов.

    Был создан специальный трест «Уралплатина» и ему выделены значительные средства не только на неотложные нужды, но и для электрификации главных приисковых районов, разведочных работ и строительства фабрик. Один из заводов Урала полностью переключили на ремонт драг, изготовление бутар и другого приискового оборудования.

    С хищническими методами разработки повели решительную борьбу, но «…ввиду исключительного, мирового значения принадлежащих РСФСР месторождений платины…» постановление Совета Труда и Обороны разрешало всем гражданам, артелям и кооперативам производить поиски, разведку и добычу платины вне пределов государственных разработок при условии соблюдения всех установленных правил. Было объявлено, что «государство гарантирует оплату сдаваемой платины по полной стоимости… устанавливаемой в соответствии с мировым курсом на платину». При этом половину стоимости старатель мог получать не деньгами, а оборудованием, продовольствием и другими товарами, что было весьма существенно в те трудные годы и способствовало борьбе с тайными скупщиками.

    Старательская добыча начала возрастать. Еще больших успехов достигли на государственных разработках. В 1922 году были восстановлены и начали работать 17 драг. Вскоре же приступили к изготовлению драг своей конструкции, которые оказались надежнее и производительнее зарубежных. С зависимостью было покончено, а недавние властители платинового рынка были вынуждены просить о продаже им металла «на взаимовыгодных условиях». Под этим, конечно, подразумевалось старое: собирались они покупать руду и платить только за платину. А предложили им чистые металлы платину, палладий, осмий, иридий в соответствии с международными стандартами и ценами! (Получение чистых металлов было в большом масштабе освоено свердловскими металлургами под руководством Н. Н. Барабошкина, одного из крупнейших металлургов страны.)

    Платиновая промышленность Урала не только была восстановлена, но вскоре превысила количественные и качественные показатели предреволюционных лет. И все же было очевидно, что впереди трудные годы…

    «Век девятнадцатый, железный» иногда называют образно и «веком россыпей», потому что тогда в основном они обеспечивали человечество золотом, платиной, оловом, вольфрамом, драгоценными камнями и многим иным. Преимущества россыпей над другими типами месторождений неоспоримы, но большой их, можно сказать, недостаток в том, что их хватило ненадолго! Нашему веку, по словам крупнейшего знатока платиновых россыпей Н. К. Высоцкого, «достались лишь крохи от былых богатств».

    На Урале за 100 лет с открытия россыпей, по официальным данным, добыли около 300 тонн платины (в десять раз больше, чем в Колумбии). Понятно, что в условиях частного предпринимательства ни о какой упорядоченной, рациональной разработке недр не могло быть в речи. Потому-то теперь, после революции, предстояло определить, что же в недрах осталось, навести порядок в использовании выявленных богатств и целенаправленно, на научной основе вести поиски новых. Обобщение данных по всему миру показало большое разнообразие платиновых россыпей по условиям образования, строению, возрасту и другим признакам.

    В равнинных областях они редкость и характерны лишь для горно-складчатых зон, где обнажены ультраосновные породы и большая «энергия рельефа» обусловливает быстрое их разрушение. При этом непосредственно над коренными источниками, например на плоских возвышенностях, возникают неперемещенные — элювиальные — россыпи. При более расчлененном рельефе обломки под воздействием силы тяжести, дождевых и снеговых вод сползают, образуя на склонах шлейф — делювиальные россыпи. Россыпи этих типов часто сопряжены, трудно разграничимы, их обычно называют элювиально-делювиальными. Для них характерны неокатанные угловатые обломки. По богатству они существенно не отличаются от коренных источников. Обогащение происходит незначительно, лишь за счет выщелачивания легко растворимых соединений и вымывания мелкого материала.

    В зонах холодного и умеренного, слабовлажного климата главным фактором разрушения служит физическое выветривание (этот термин в данном случае к ветру непосредственного отношения не имеет, смысл его заключается в механическом измельчении горных пород, обусловленном в первую очередь неодинаковым расширением различных минералов при резких сменах температуры).

    Интенсивность процессов физического выветривания сильно убывает по мере измельчения материала и не приводит к полному высвобождению ценных минералов. Поэтому в холодных странах, где преобладает физическое выветривание, значительные элювиальные россыпи редкость. Такими были платиновые россыпи Нижнетагильского района. На плоских возвышенностях и пологих склонах там за длительный период разрушения образовался зеленовато-бурый щебенчатый слой, который по всей своей мощности, местами достигающей двух-трех метров, содержал платину обычно в сростках различных минералов. Поэтому перед промывкой обломки приходилось измельчать. Рудные минералы не были окатаны, содержание их несколько возрастало лишь в верхней части щебенчатого слоя благодаря вымыванию мелких частиц.

    По-иному выглядят элювиальные россыпи в жарких странах, там процессы физического выветривания играют подчиненную роль, главная же принадлежит химическим изменениям. Под воздействием воды, кислорода и углекислоты воздуха, при энергичной деятельности организмов и растений быстро идет разложение силикатов, превращение магматических пород в глины и латериты остаточные скопления окислов железа и алюминия. Эти процессы при длительном течении проникают глубоко, образуется мощная кора выветривания, в которой устойчивые минералы полностью обособлены.

    Крупные скопления платиноносного латеритного элювия — своеобразной породы, названной бирбиритом, известны, например, в Западной Эфиопии, в бассейне реки Бир-бир.

    В районах, где после образования коры выветривания климат изменился-стал влажным, размыв коры благоприятствовал накоплению россыпей в речных долинах. При сухом климате с сильными устойчивыми ветрами, характерными для пустынь, образуются эоловые россыпи. Название это не очень точно: эоловыми, по имени бога ветров греческой мифологии, называют породы, например лессы, состоящие из частиц, принесенных ветром. Россыпи, переработанные ветром, тоже называются эоловыми, хотя, вероятно, их правильнее было бы называть антиэоловыми, питому что в них сосредоточены лишь частицы, которые оказались Эолу не по зубам!

    Платиновые эолово-элювиальные россыпи, связанные с корой выветривания, известны в пустынях Австралии. Разработку их тоже ведут «эоловым» метолом: платину отделяют не промывкой (вода там драгоценна), а провеивая песок, как зерно на току.

    В Колумбии значительная часть платины была добыта из таких элювиально-эоловых россыпей, а также из покрывающих на большом протяжении западные склоны Кордильер беспорядочных скоплений самых разнообразных обломков (валунов, гальки, песка, глины), порожденных грязевыми потоками при катастрофических ливнях. Мощность таких отложений (их называют коллювиальными, или каличе) достигает местами сотен метров, и кое-где они содержат золото и платину в количествах, достаточных для разработки. Более, чем каличе, богаты там «черные» и «красные» пески, которые накапливаются на дне сухих логов после дождей умеренной силы, снимающих лишь вершки с элювиального покрова. Из них платину извлекали еще в доколумбовое время.

    Контрастом к таким творениям тропической зоны, который как бы демонстрирует широту диапазона природных процессов, приводящих к сходным результатам, являются россыпи, порожденные ледниками.

    В эпохи развития оледенения были «вспаханы» огромные территории. Ледники уносили в своих моренах разрушенные месторождения, измельчая при этом обломки, высвобождая стойкие минералы. Кое-где при благоприятных условиях, отмытые подледниковыми водами, они накапливались. (Одна из таких россыпей в песках, оставленных ледником, известна вблизи Москвы, у реки Икши, где даже делались когда-то попытки добывать золото, но были прекращены «за убогостью содержания».)

    Ледниковые отложения, содержащие тонко измельченную платину, известны в Кировской области, в бассейне реки Водки, куда доходил ледник, двигавшийся, по-видимому, с Урала. На Кольском полуострове в системах рек Ивало, Лотта, добывали платину и золото из мелких скоплений, в песках, оставленных ледником.

    Разрабатывались такие россыпи и в Канаде (бассейн реки Тюламин), в Новой Зеландии, в США, где в штате Нью-Норк в моренных отложениях был найден платиновый самородок весом 105 граммов.

    Практическое значение россыпей всех этих типов — элювиальных, делювиальных, коллювиальных, эоловых, ледниковых — невелико, и все они суммарно дали меньше платины, чем россыпи речные (алювиальные). Это в равной мере относится к другим «россыпным» полезным ископаемым и обусловлено в первую очередь тем, что реки-главные транспортные артерии, они уносят с континентов свыше 70 процентов обломков (остальное приходится на долю ветра, айсбергов и морских волн).

    Речные россыпи отличаются от других значительными масштабами, более длинной жизнью, хорошей окатанностью обломков, их отсортированностью по размерам и тяжести.

    Доказано, что и в предшествующие эпохи роль рек в формировании рельефа была велика, следы их деятельности встречают повсюду, прослежена эволюция речных систем от зарождения до неизбежного отмирания; цикличность их развития, непрерывная смена в пространстве и времени процессов размыва и отложения обломков.

    На Урале известны россыпи, приуроченные к древней гидросети, но наибольшее практическое значение имели россыпи террас и долин современных рек. В отложениях, покрывающих эти россыпи, в Исовском и Тагильском районах обнаружены скелеты пещерного льва, мамонтов и других животных, и это позволило установить, что наиболее интенсивно формирование россыпей происходило в конце ледникового периода, когда водообильность, порожденная таянием льда, ускорила процессы перемещения обломков.

    Урал расположен в климатической зоне, где процессы выветривания протекают сравнительно вяло. Почему же здесь сформировались россыпи куда более богатые, чем в южных странах?

    Ответ был получен при изучении геологической истории края. Разрушение коренных источников платины наиболее интенсивно протекало в конце мезозойской и в начале современной эры в условиях жаркого, влажного климата. Тогда уже были высвобождены из плена и накоплены платиновые минералы. Многочисленные продольные депрессии и другие особенности геологического строения препятствовали выносу этих минералов за пределы нынешнего Урала. Многократно происходило перемещение, перемыв и захоронение драгоценных обломков. История формирования россыпей Урала, как и многих других районов, подтверждает: возникновение крупных скоплений возможно лишь при стечении целого ряда благоприятных условий, среди них химическое выветривание, а следовательно, теплый, влажный климат-одно из существенных, даже обязательных (и в этом смысле алхимики были правы!). Так же обязательно интенсивное разрушение «родителей»-ультраосновных пород, только они содержат платиновые минералы, достаточно крупные, чтобы накапливаться в россыпях.

    В связи со значением, какое приобрели в XIX веке россыпи, отбор шлиховых проб производился без преувеличения повсюду. Специалисты выбирали районы для поисков, руководствуясь «признаками», а неспециалисты надеялись на удачу. И тем и другим сопутствовал успех, но меньше всего в отношении платины. Нигде не удалось выявить ее концентраций, сопоставимых хотя бы с колумбийскими, не говоря уже об уральских.

    В монографии Н. К. Высоцкого описание платиновых проявлений в нашей стране вне Урала занимает целый том. Сенсацией явилась находка в 1911 году россыпей в бассейне Вилюя, а затем и Алдана, но разочарование наступило быстро: обычно платина и осмистый иридии составляли лишь примесь и возможности разработки этих россыпей определяло золото.

    И в других странах результаты были не лучше, незначительных успехов достигли лишь в Эфиопии и ЮАР.

    По мере уменьшения ресурсов внутриконтинентальных россыпей — и не только в отношении платины — все больше внимания привлекали огромные скопления обломочного материала на границах суши и морей.

    Накопление тяжелых минералов происходит там между линией прилива и отлива, а в закрытых морях в зоне прибоя. Высокая окатанность и малые размеры обломков, редко превышающие 0,3 миллиметра, говорят об интенсивности работы волн при размыве коренных пород прибрежной зоны. Мощность прибрежно-морских россыпей обычно невелика, составляет всего десятки сантиметров, но это компенсируется огромной их протяженностью вдоль береговой линии-десятки и сотни километров. Помимо современных, известны и более древние россыпи, захороненные на дне моря или на прибрежных террасах.

    Под влиянием ветров, столь характерных для приморской зоны, часто наблюдается преобразование морских россыпей в эолово-морские с формированием рудоносных дюн-они обычно черные благодаря обилию магнетита и реже красноватые, когда обогащены гранатом.

    Прибрежно-морские россыпи приобретают все большее значение, особенно в отношении титана, хрома, цезия, отчасти и золота, но значительных платиновых скоплений в них пока не обнаружено. Попутно с золотом из прибрежно-морских россыпей платину в небольших количествах добывают на Тихоокеанском побережье, в США и Чили, а также на северо-востоке Австралии. Сулят некоторые перспективы побережья Явы, Мадагаскара, Бретани, но в очень ограниченных пределах.

    В первые десятилетия нашего века платиновый голод снова, как когда-то, перед открытием богатств Урала, стал реальной угрозой. Было ясно, что старые районы россыпей обеднели, а на открытие новых надеяться нет реальных оснований. Будущее показало, что такой прогноз был верен.

    И все же платиновый голод не наступил!

    НОВЫЕ ИСТОЧНИКИ

    Обнаружить незримые источники платиноидов, как и многих других редких элементов, удалось благодаря прогрессу химических и минералогических методов исследования, тщательному изучению всех геологических формаций. Оказалось, что высокие концентрации платиновых металлов есть не только в дунитах и связанных с ними россыпях. И находятся эти богатства не там, где их до сих пор искали.

    Наука о полезных ископаемых не случайно получила название — горное дело. От века горные хребты — основной источник минеральных богатств. Возникшие на завершающей стадии развития геосинклиналей, наиболее подвижных и проницаемых зон земной коры, они вмещают разнообразный комплекс горных пород, просматриваемый в рельефе и потому доступный. Вытянутые на сотни и тысячи километров такие складчатые структуры разделены платформами устойчивыми блоками земной коры, которые имеют изометрические очертания и существенно отличаются от геосинклинальных зон своей историей, двухэтажным строением и сглаженным рельефом.

    Нижний этаж (фундамент) платформ сложен интенсивно смятыми, измененными изверженными и осадочными породами, сформированными на ранних этапах геологической истории в условиях, близких к геосинклинальным. Они обнажены в основном лишь на щитах в зонах устойчивого поднятия, а на остальном пространстве платформы их покрывают молодые — и по возрасту и по облику — спокойно залегающие осадочные толщи верхнего этажа.

    Платформы и особенно их фундамент по богатству полезных ископаемых отнюдь не уступают геосинклинальным структурам, но это доказано лишь в наш век. Плохая обнаженность, труднодоступность и другие причины надолго задержали освоение древних комплексов.

    Какие возможности они таят, показало, например, открытое в 1883 году на Канадском щите, севернее озера Гурон, медно-никелевое месторождение Садбери. Сульфидные руды образуют там многочисленные мощные — до 40 метров, очень большие — площадью до одного квадратного километра — залежи. Они сосредоточены в нижней части огромного (60 X 25 километров) блюдцеобразного массива (лополита), имеющего концентрическое строение. В верхней его части залегают кислые породы (гранитоиды), ниже с постепенным переходом — средние (диориты) и еще ниже — основные (габбро, пориты), вмещающие руду. Общая мощность лополита достигает 3 километров.

    Месторождение Садбери быстро стало крупнейшим поставщиком меди и особенно никеля (80 процентов добычи этого металла в капиталистических странах и в наши дни приходится на его долю).

    Первые 15 лет месторождение разрабатывали с уверенностью, что извлекают из руды все полезное, но оказалось, что «слона-то и не приметили»!

    Анализы показали, что в руде содержание платиновых металлов не ниже, чем в уральских россыпях. Этому трудно было поверить не только потому, что платиновые минералы там не видны, но и потому, что еще прочным было представление о дунитах как единственно возможных коренных источниках платины, а их в Садбери нет.

    Детальные исследования не оставили сомнений: платиноиды в виде тончайшей примеси содержатся в сульфидах меди и никеля.

    Удалось расшифровать и условия рудообразования. В конце протерозойской эры произошло крупное внедрение базальтоидной магмы. Не найдя дорогу к поверхности, Она растекалась между гранитогнейсами и покрывающим их осадочным чехлом. Внедрение магмы происходило многократно. Как на пути из глубин, так и на месте, в пределах лополита, шло разделение минералов по тяжести и химическим особенностям: сульфидный paсплав отделялся от силикатного, образуя «донные» залежи — зону вкрапленных и сплошных руд, богатых никелем и платиноидами. Часть сульфидного расплава была вытеснена из пределов лополита и образовала «отжатые» залежи среди вмещающих пород. Они имеют длину до 8 километров, и в них меди больше, чем никеля.

    Наиболее богатой платиновыми металлами оказался самый низ лополита, там содержание достигало 20 граммов на тонну и они образовали не только примесь в сульфидах, но и собственные минералы — сперрилит, стибиопалладинит.

    Среднее содержание платиноидов в руде было определено тогда в два грамма на тонну и сулило огромные прибыли при попутной их добыче, а ее возможный масштаб обеспечил бы владельцам Садбери господство на мировом платиновом рынке.

    Лучезарные надежды померкли, когда убедились, что извлечь тонкодисперсную примесь задача труднейшая. На решение ее не жалели средств, но лишь спустя 20 лет методом электронного аффинажа удалось извлечь из 80 тысяч тонн медно-никелевого сплава первые 100 килограммов платиновых металлов. Всего-навсего! Оставалось одно; продолжать опыты, совершенствовать технологию.

    Открытие платиноидов на Садбери побудило провести проверку и на многих иных рудных месторождениях. И почти везде надежды не оправдались. Лишь на медно-никелевых месторождениях «садберийского» типа (в Канаде-районы Манитобы, Квебека; на Балтийском щите-в Швеции и Норвегии) было установлено содержание платиновых металлов почти такое же, как на Садбери. Стало очевидным, что выявлен новый широко распространенный тип месторождений, что не только дунитовый расплав, но и «базальтическая жидкость» выносит из подкоровых глубин платиноиды вместе с медью, никелем, железом и при благоприятных условиях эти рассеянные в магме элементы обособляются накапливаются.

    Различие в условиях формирования получило свое отображение в составе руд: по сравнению с уральскими садберийские руды имеют более высокое содержание палладия (часто он преобладает над платиной), в них больше родия и рутения и меньше иридия и осмия. В дальнейшем было установлено, что для этих руд характерны платиновые минералы, содержащие свинец, олово, сурьму, висмут, теллур, что несвойственно месторождениям уральского типа.

    Сфера поисков коренных месторождений расширилась, пришлось признать перспективными не только геосинклинальные зоны, но и щиты платформ. Но остальную и притом большую часть их территории — плиты, где фундамент перекрыт молодыми толщами, — продолжали считать почти бесперспективными для открытия месторождений, порожденных глубинными процессами. Такой вывод был обоснован изучением в основном Русской и Северо-Американской платформ и был для них правильным.

    Однако вскоре выявилось, что платформа платформе рознь!

    В 1922 году на Сибирской платформе в низовьях Енисея производили геологические исследования молодой геолог Н. Н. Урванцев (ныне Герой Социалистического Труда) и его помощники-Е. В. Павловский (ныне заслуженный деятель науки) и Б. Н. Рожков (талантливый исследователь, погибший молодым).

    Геологическая обстановка района оказалась «платформенной» лишь со многими оговорками; осадочный чехол напоминал «битую тарелку», и в его составе преобладали базальтовые покровы (траппы), порожденные многочисленными излияниями, приуроченными к разломам. Процессы разрушения благодаря высокому положению платформы над уровнем моря шли здесь интенсивно, и во многих местах были обнажены корни вулканов, лакколиты и пластовые залежи габброидных пород.

    Урванцев и его помощники обнаружили в этих породах на горе, названной Рудный, сульфиды меди и никеля. Они охарактеризовали это месторождение как сходное с Садбери, что сразу же привлекло внимание к отдаленному и труднодоступному району. Образцы, изученные Н. К. Высоцким и Н. Н. Подкопаевым, показали высокое содержание палладия и платины.

    Так в 1923 году началась история открытия Норильского месторождения платиносодержащих медно-никелевых руд.

    Руды Норильского месторождения входят в состав крупного, четко расслоенного по вертикали массива габбро, долеритов и других близких к ним пород. Этот массив прорывает осадочно-вулканогенную толщу пермского возраста и перекрывается молодым лавовым покровом.

    Вкрапленные сульфидные медно-никелевые руды образуют гнезда и линзы в габбро у подошвы массива и частично в подстилающих его породах. Есть и «висячие» пластовые залежи, а также сульфидные жилы (в том числе образовавшиеся на поздних стадиях из гидротермальных растворов).

    Характерная особенность месторождения-в очень неравномерном распределении платиноидов, на одних участках их не удается выявить даже при микроскопическом изучении всех сульфидных минералов, а на других они образуют заметные обособления-на месторождении известно много платиновых минералов (сплавы, сульфиды, теллуриды, арсениды и др.).

    Открытие и освоение Норильского рудного района обеспечило сохранение за нашей страной ведущего положения в отношении платиновых металлов, после того как уральские россыпи утратили свое значение и появились на мировой арене новые, сильнейшие конкуренты.

    Опыт Норильска заставил пересмотреть представления о рудоносности древних платформ, разделить их на устойчивые (Русская, Северо-Американская) и подвижные (Сибирская, Китайская, Африканская), гораздо более проницаемые и поэтому перспективные в отношении рудных богатств и в пределах своего верхнего структурного этажа.

    Наиболее яркие доказательства правильности такого заключения принесло изучение Африканской платформы и особенно ее юго-восточной части (ЮАР, Зимбабве) где обнаружены и глыбы архейского фундамента, и разнообразный комплекс протерозойских, и более молодых пород платформенного чехла. Интенсивная магматическая деятельность обусловила там возникновение многочисленных полезных ископаемых. Уникальны алмазные месторождения этой провинции-воронки взрывов, пронзившие земную кору, заполненные «посланцами мантии».

    Столь же уникален и Витватерсранд-гигант, который (с 1886 года!) дает золота больше, чем все остальные месторождения мира, вместе взятые. Вольфрам, олово, молибден, медь, висмут, драгоценные камни и многие другие полезные ископаемые были выявлены там в завидных количествах.

    А платина оставалась незамеченной, пока не помогли муравьи. Их постройка с драгоценными «кирпичиками» была встречена золотоискателями в северо-восточной части провинции Трансвааль, вблизи города Лейдсдорпа. Отыскать первоисточник им не удалось, но вещественное доказательство шлих, полученный при промывке разрушенного муравейника, — было сохранено как «курьез природы». Им в 1924 году заинтересовался опытный геолог Ганс Меренский, уроженец Трансвааля, посвятивший жизнь его изучению. Установив, что в шлихе действительно есть платиновые минералы, он занялся промывкой проб вблизи муравейника, в бассейне реки Олифантс, и выявил еще несколько платиновых зерен. Это убедило: «курьез природы» не мистификация (случаев, когда пробы «подсаливали» ценными минералами в корыстных целях или «для смеху», было немало). Меренский начал планомерный поиск, продвигаясь на запад, в верховья реки. Там, в пустыне Калахари, под чахлым травяным покровом на сотни километров протянулся Бушвельдский магматический комплекс, представленный главным образом красными гранитами, однообразными, мертвыми. Поисковики давно уже пришли к выводу, что Бушвельдский комплекс почти так же бесплоден как окружающая его пустыня.

    Почти два года Меренский упорно изучал восточную, краевую часть массива и, как отметил профессор П. Вагнер в монографии «Платиновые месторождения Южной Африки» (1932), «занял выдающееся место в эпосе горных разведок, найдя месторождения, которые превосходят все, о чем можно было мечтать».

    Краевая зона массива шириной до 20 километров существенно отличается от остальной. В самом низу, у «горячего» контакта с осадочными породами, залегают темно-серые нориты (разновидность габбро), их мелкозернистость свидетельствует о довольно быстрой кристаллизации. Дальше, на расстоянии 6–8 километров от контакта, норит уже крупнозернистый, перемежается с ультраосновными породами — пироксенитом и дунитом.

    Это явилось неожиданностью: место дунитам, по научным канонам того времени, в геосинклинальных структурах, а не на платформе!

    Меренский находил в этой зоне среди обломков хромит, сплошной и вкрапленный в дунит, и вправе был предполагать, что встретит руду уральского типа. Однако в слоеном пироге из норитов, пироксенитов, дунитов он отыскал тонкий горизонт, чуть больше полуметра, ограниченный сверху и снизу пропластками хромита и состоящий из очень крупнокристаллического (пегматоидного) пироксенита с вкрапленностью и скоплениями сверкающих, как золото, сульфидов меди и железа (халькопирит, пирротин) и серебристого сульфида никеля-пентландита. И рядом с ними-можно было не поверить глазам повсюду мелкие, но все же различимые платиновые минералы.

    Анализы подтвердили: да, это именно так. Содержание платиновых металлов достигало в отдельных пробах 50 граммов на тонну, а в среднем составило 10 граммов. (Напомним, что руда, дающая два грамма, считалась тогда, да и теперь, богатой.)

    Тем не менее бить в литавры было рано. Вполне возможно, что это очередной «каприз природы» — небольшая линзочка, вероятно, единственная во всем этом огромном массиве.

    Меренский упорно искал ее продолжение, снизу доверху рассекал склоны канавами, продвигаясь все дальше и на юг и на север, с удивлением убеждаясь, что привычные представления здесь не приложимы: слой продолжался, почти не меняясь ни по мощности, ни по содержанию. И везде он имел одинаковое пологое падение к центру массива. Это позволило геометрическим построением определить, где он должен быть обнажен в рельефе, сузить зону поиска.

    За короткий срок этот слой, вскоре получивший название риф (горизонт) Меренского, был прослежен вдоль восточного контакта массива на 110 километров. Но и этим дело не ограничилось. Меренекий обнаружил «свой» горизонт и у юго-западной оконечности массива, там, где другие искатели ничего не нашли за многие годы. Он «протянул» горизонт в районе города Рюстеноурга на 230 километров (с перерывами) и еще на 60 километров вдоль северной границы массива. И везде на протяжении более 400 километров горизонт сохранял свое место в слоеном пироге магматических пород, имел мощность от 0,2 до 4 метров и среднее содержание 8-10 граммов на тонну. Бурение показало, что и на глубину он без изменений продолжается по крайней мере на 1000 метров. Даже в морских бассейнах редко слои имеют такое постоянство, а ведь этот возник из моря расплавленной магмы. Риф Меренского в специальной литературе обычно характеризуют как «самое уникальное образование среди всех магматических комплексов мира».

    Бушвельдский массив основательно изучен, он представляет собой лополит площадью 40 тысяч квадратных километров, по сравнению с ним Садбери, его канадский родственник, выглядит карликом — в 20 раз меньше. Они во многом сходны, но имеют по строению и минерализации немало различий. Становление Бушвельдского массива продолжалось сотни миллионов лет, и медленность процесса обусловила его полную дифференциацию. Одну из самых спокойных ее стадий запечатлел горизонт Меренского, когда по всей площади массива произошло отложение хромита — окисла, затем при резком изменении геохимической обстановки накапливались платиноносные сульфиды — в пегматоидную фазу, характерную кристаллизацией минералов из газовых растворов, а после этого вновь отлагался хромит.

    В центральной части Бушвельдского массива все эти образования были уничтожены внедрением гранитов, но и сохранившаяся часть грандиозна. К тому же установлено, что рифом Меренского платиновые богатства района не ограничены. Выше рифа, в районе Линденбурга, обнаружен двухметровый слой хромитита-породы, состоящей из хромита и оливина с тонкораспыленной платиной (до 18 граммов на тонну). Помимо таких сульфидных руд, сходных с норильскими, выявлены в Бушвельдском комплексе и «уральские», приуроченные к дунитам. В слоеном пироге нижней части массива есть пластообразные залежи с бедной вкрапленностью платины. Этот дунит обыкновенный, «уральский», зеленоватый, но кое-где известны трубчатые тела черного, железистого дунита, очень тяжелого и рудой богатого. Одна такая труба диаметром 18 метров уже отработана на глубину 300 метров при среднем содержании 16 граммов на тонну.

    К северу от Бушвельдского массива, на территории Зимбабве, расположено еще одно геологическое чудо — Великая дайка, длиной почти 500 километров, шириной 5-10 километров. Почти прямая, она возвышается как стена над окружающей местностью на 50-300 метров и состоит из тех же пород, что и нижняя часть Бушвельдского массива. Кое-где в этой дайке за последние годы выявлены тонкие, но богатые платиной хромитовые слои.

    Все эти открытия ознаменовали новую эпоху, но сделаны они были в трудных для освоения районах, а главное, извлечение платиноидов из сульфидных руд оказалось таким твердым орешком, что надежд на быстрый успех не осталось.

    Разработано было множество технологических схем, но минералы-невидимки не желали сдаваться, для каждого рудного тела и даже для отдельных его зон были характерны свои минеральные ассоциации, и эти, казалось бы, незначительные различия существенно влияли на ход процессов обогащения.

    На месторождении Садбери промышленное извлечение платиноидов началось лишь в 1934 году, после тридцатилетних экспериментов, и все же при очень низком коэффициенте извлечения.

    И стало ясно: только глубокое изучение минералогии и технологических свойств платиновых руд может привести к успеху.

    МИР МИНЕРАЛОВ

    Все выявленные в первой половине XIX века платиновые минералы как бы подсказывали вывод о том, что в природе эти металлы образуют только сплавы между собой, с железом и в малой мере с золотом. Однако дальнейшие исследования показали, что мир платиновых минералов этим не ограничен.

    На о. Борнео в 1886 году Веллер обнаружил лаурит — минерал, состоящий из рутения и серы — RuS2, черный, образующий изометрические кристаллы, очень твердый, хрупкий и химически стойкий, нерастворимый в кислотах. Долго не могли поверить, что его удельный вес всего-навсего 6,2 г/см3. После этого главный отличительный признак-уникальная тяжесть платиновых минералов-перестал быть абсолютной истиной! Возникло опасение, что во многих россыпях этот единственный рутениевый минерал прозевали, и он уходит при промывке в отвалы вместе с другими, ценности не представляющими.

    Вслед за лауритом на медно-никелевых месторождениях Канады обнаружили хорошо кристаллизованный минерал, названный сперрилитом (в честь известного геолога Сперра), состоящий из платины и мышьяка- PtAs2, оловянно-белый, непрозрачный, легкоплавкий, но очень стойкий, сохраняющийся в россыпях.

    Позднее, в 20-х годах нынешнего века, в платиновой руде Южной Африки обнаружили куперит PtS, бреггит (Pt, Pd, Ni)S, потарит PdHg, стибиопалладинит Pd3Sb, а на Урале-купроплатину (Pt, Fe, Cu), никелистую платину (Pt, Fe, Ni), ауроосмид (Ir, Os, Au).

    В дальнейшем изучению платиноидов уделялось все больше внимания, но минералогических открытий это не приносило. Все сущее в природе уже было проверено на содержание этих элементов, и надеяться на новые открытия, казалось, нет оснований.

    «Мертвый» период завершился во второй половине нашего века, когда достигли блестящих результатов в усовершенствовании традиционных способов анализа и создали множество новых, таких, как спектральный, спектрохимический и особенно микрорентгеноспектральный, позволяющие определять химический состав мельчайших-доли кубического микрометра! — зерен минералов непосредственно в руде. На выбранный под микроскопом участок поверхности шлифа направляют электронный зонд — сфокусированный поток электронов, возбуждающий рентгеновское излучение. Его характеристику запечатлевают на спектрограммах и по ним безошибочно определяют элементы, содержащиеся в облучаемом веществе.

    Применение микрорентгеноспектрального анализа привело за последние два десятилетия к открытию примерно вдвое большего числа минералов, чем за всю предшествующую 150-летнюю историю их изучения, Если к 1950 году было известно 30 минералов группы платины, то теперь их насчитывают свыше 90.

    Число известных минералов, в которых платина главный компонент, за этот период удвоилось — с 11 до 22, а рекордистом оказался палладий: до 1951 года было известно всего 6 его минералов, а теперь-30!

    Почти все открытые за последний период минералы представляют собой соединения платиновых металлов с мышьяком, висмутом, теллуром, сурьмой, свинцом, оловом. При сложном составе, характерном для новых минералов, сохранить традицию-давать им названия по главным элементам-оказалось затруднительным, и распространение получили имена, имеющие географическую или мемориальную основу. Например, мончеит (Pt, Pd) (Те, Bi)2 назван по месту находки в Мончетундре, а звягинцевит (Pd, Pt)3(Pb, Sn), высоцкит (Pd, Ni)S, котульскит Pd(Te, Bi) — в честь исследователей О. Е. Звягинцева, Н. К. Высоцкого и В. С. Котульского.

    Минералов, в которых главное место занимает родий, до наших дней вовсе не было известно, теперь таких два — холлингвортит RhAsS и рутениевый холлингвортит (Rh, Ru, Pt)AsS.

    К трем ранее известным минералам осмия, сплавам его с иридием и рутением, за последнее время добавилось еще два — химические соединения с мышьяком и серой — осарсит OsAsS и эрликманит OsS2.

    Список иридиевых минералов, их было известно 8, пополнился лишь одним-это ирарсит IrAsS.

    Рутениевый минерал лаурит RuS2, открытый в прошлом столетии на о. Борнео, оставался единственным до 1971 года, когда был открыт осрутин RuOs.

    Почти все выявленные за последние десятилетия платиновые минералы представлены мельчайшими зернами, вкрапленными в другие минералы, преобладающие в составе руды, такие, как поликсен, ферроплатина, невьянскит, хромит, магнетит и различные сульфиды. Это очень затрудняет изучение, а для того чтобы новый минерал был признан, необходимо дать точную физико-химическую характеристику, доказать, что он имеет качественные отличия от сходных минералов. Когда же дело касается минералов ценных, а все платиновые минералы таковы, ясное представление о свойствах, размере зерен, особенностях их срастания и многом другом приобретает еще и важное практическое значение. Поэтому не только «погоня» за новыми, но и углубленное изучение уже давно известных минералов не прекращается.

    Структура минерала является одной из важных его характеристик. Зерна платиновых минералов, даже наиболее распространенных в россыпях, обычно мелки и укатаны. Поэтому лишь в результате многолетнего упорного труда П. В. Еремееву в 1878 году удалось охарактеризовать формы кристаллов поликсена, осмистого иридия и иридистого осмия. В дальнейшем его выводы были подтверждены.

    В наше время рентгеноструктурный анализ открыл возможность определения структуры минералов даже в мельчайших зернах. Установлено, что в кубической сингонии кристаллизованы самородная платина, поликсен, платинистый иридий, сперрилит и многие другие. Тетрагональное строение характерно для ферроплатины, куперита, высоцкита и других, а минералы иридия и осмия невьянскит, сысерскит и родственные им являются гексагональными.

    Твердость платиновых минералов, даже не образующих крупных выделений, теперь определена не только по весьма схематичной шкале Мооса, но и в абсолютных величинах с помощью микротвердомера, путем вдавливания алмазной иглы под определенной нагрузкой. Самым твердым оказался самый легкий минерал лаурит-3150 кгс/мм2 (или 7,8 по шкале Мооса). Немногим ему уступает по твердости и другой рутениевый минерал-осрутин. А самый мягкий (110 кгс/мм2) — меренскит PdTe2, названный в честь Меренского. Другие природные соединения палладия с теллуром, висмутом, свинцом тоже отличаются малой твердостью. Таким образом, рутений и палладий занимают крайние позиции по этому показателю, а в промежутке расположены остальные члены семейства. Для наиболее распространенных минералов характерны такие средние значения твердости (в кгс/мм2): ферроплатина — 290, поликсен — 400, невьянскит-620 (для сравнения отметим, что твердость природного золота — известно более 20 его минералов-находится в пределах 50-140 кгс/мм2).

    Магнитная сепарация — один из важнейших способов обогащения руд, поэтому выяснению магнитности платиновых минералов уделяется значительное внимание. Установлено, что наиболее магнитны минералы, богатые железом, в основном — ферроплатина, ее зерна притягиваются обыкновенным магнитом, но некоторые из них почему-то не магнитны, становятся ими при значительном давлении и снова утрачивают это свойство после прокаливания. Обнаруживают магнитность и минералы, не содержащие железа, например сысерскит, полярно магнитна купроплатина. Эти особенности магнитных свойств, как и многих иных, еще ждут своего объяснения.

    Исследования последних десятилетий показали ошибочность долго господствовавшего представления о том, что в условиях земной коры платиновые металлы способны образовывать в сколько-нибудь значительном масштабе лишь сплавы между собой и с железом.

    Теперь установлено значительное распространение интерметаллическнх образований — металлидов. Они занимают как бы промежуточное положение между изменчивыми по составу сплавами и химическими соединениями, с характерным для них постоянным целочисленным соотношением элементов, отвечающим представлениям о валентности.

    К металлидам относятся, например, минералы, состоящие из платины, палладия, олова и свинца.

    Замечательный итог последнего периода изучения платинидов — это доказанное широкое распространение и практическое значение минералов-невидимок: арсенидов, антимонидов, висмутидов, сульфоарсенидов, сульфидов, селенидов, теллуридов — химических соединений платиноидов с серой и ее аналогами.

    Зерна, которые еще недавно считали мономинеральными, оказались сложными сростками. Мир платиновых минералов расширился, и вместе с этим выяснилось, что для платиновых металлов характерна и «безминеральная» форма существования, в тончайше распыленном, вероятно атомарном, состоянии, что позволяет им прятаться в кристаллических решетках многих минералов.

    Познание форм существования платиновых металлов в природе содействовало успехам технологии.

    Правда, она еще очень сложна, насчитывает свыше 60 трудоемких операций (дробление, растворение, магнитная сепарация, флотация, плавка, термическая обработка, электролиз и т. д.), но уровень извлечения все же повысился настолько, что в наши дни сульфидные месторождения платформ стали основным источником платиновых металлов. Доля россыпей теперь составляет лишь несколько процентов.

    Попутное получение платиновых металлов (вместе никелем и медью) не привело пока к их удешевлению. Более того, стоимость их растет (о причинах этого будет идти речь дальше), и рациональное использование становится все более актуальной проблемой. Для решения ее необходимо ясное представление о свойствах и строении этих металлов. Что же удалось узнать?

    МИР АТОМОВ

    В истории науки открытие платины оставило яркий след, подорвав веру в самое святое — неподдельность золота и непогрешимость Библии, развенчав алхимию. Такими негативными результатами дело не ограничилось. Дальнейшее изучение платиновых металлов не только расширило возможности их практического применения, но и привело к нескольким поистине великим открытиям.

    В 1823 году, когда свойства платины уже считали хорошо изученными, немецкий химик И. Дёберейнер продемонстрировал опыт, который выглядел как фокус и вызвал общее недоверие. Дёберейнер, выпуская из сосуда струю водорода, помещал на ее пути тонкодисперсную (губчатую) платину, и тотчас же водород загорался сам собой при комнатной температуре и даже на морозе.

    Опыт повторяли многие и убедились — подвоха нет. Сколько бы раз ни воспламеняли струю, сколько бы времени ни горел водород, платина у контакта с ним остается неизменной, сохраняя свой вес, вид, свойства. Следовательно, она не участвует в реакции, так почему же тогда, соприкасаясь с ней, загорается водород? Почему нагревается платина?

    Объяснить это не смог тогда никто, за исключением, как иронически отметил автор открытия, сторонников старой версии о том, что платина творение бесовское. Не пытаясь их опровергнуть, Дёберейнер сосредоточил усилия на практическом использовании замечательного свойства, создав водородное (или дёберейнерово) огниво — свинцовый сосуд, в котором серная кислота, реагируя с цинком, образует водород. Его струя, при выходе из крана, соприкоснувшись с платиновой пластинкой, загоралась. Горение прекращали, закрыв кран. При этом давление газа в сосуде возрастало, оттесняя кислоту от цинка, и образование водорода прекращалось, пока кран вновь не будет открыт.

    Такой быстрый и безопасный способ получения огня до изобретения спичек пользовался широким распространением. Огниво сумели «миниатюризировать» почти до размера современной зажигалки.

    Новое свойство платины привлекло общее внимание и тут выяснилось, что первым, правда в менее эффектной форме, его подметил X. Дэвн, обнаруживший в 1818 году, что в присутствии платины кислород самопроизвольно превращает винный спирт в уксусную кислоту.

    Вскоре Дёберейнер продемонстрировал еще один эффектный опыт: он взрывал гремучий газ, приближая к нему платину, как волшебную палочку.

    В те же годы другие исследователи установили, что способность возбуждать химические реакции, замедлять их или ускорять не является уникальной особенностью платины, а присуща и некоторым другим элементам и соединениям.

    Берцелиус в 1835 году предложил вещества, обладающие таким свойством, называть катализаторами (от древнегреческого: разлагать, возбуждать).

    Вслед за огнивом были изобретены каталитические грелки. Они применяются и поныне: горючее из резервуара по фитилю подводят к платиновому катализатору. Под его влиянием, взаимодействуя с кислородом воздуха, горючее окисляется и порождает тепло без образования пламени, при безопасной для воспламенения температуре.

    В конце прошлого века был придуман контактный способ получения серной кислоты путем окисления сернистого газа на платине. Для экономного ее расходования применили «пушонку» — тончайшие волокна асбеста, покрытые платиновой чернью.

    С той поры катализаторы, платиновые и другие, применяются все шире (об этом будет еще речь) и во многом обусловили прогресс химической технологии, хотя причины их «магического» действия прояснялись очень медленно, вместе с ростом знаний о строении вещества. Основа этих знаний — периодическая система элементов Д. И. Менделеева, Сущность ее общеизвестна и не требует пояснений. Здесь надо лишь отметить особую роль платиновых металлов в ее рождении. Химия тогда представляла, по существу, лишь набор разрозненных сведений об элементах и их соединениях. Попытки систематизации базировались в основном на внешних признаках и успеха не приносили.

    Открытие Волластоном и Теннантом четырех элементов, спутников платины, вызвало предположения о том, что соседство их не случайно, а обусловлено химической общностью, но доказать родство могли только очень глубокие и трудные сопоставительные исследования. Выполнить их смог только К. К. Клаус. Открытый им рутений внес как бы симметрию в строение семейства. заполнил недостающее звено. Накопленные за 20 лет упорного труда данные позволили Клаусу обосновать, что все эти металлы по своим химическим свойствам «являются членами нераздельной хорошо образованной группы».

    Результаты исследований Клауса привлекли особое внимание Д. И. Менделеева. В 1869 году он опубликовал книгу «Основы химии», которая навсегда стала подлинной основой не только химии, но и всех наук, изучающих строение вещества. В ней Менделеев особо отметил, что в открытии периодической системы путеводной нитью послужило «замечательное сходство между рядами Pd-Rh-Ru и Pt-Ir-Os… установленное казанским профессором Клаусом».

    Следует напомнить и о том, что платиновые металлы, послужив «путеводной нитью», вскоре обратились в «твердый орешек», когда пришлось Менделееву решать, где же их место в периодах и группах системы.

    Данные о свойствах платиновых металлов приведены в таблице 1.

    Бросается в глаза наиболее четкое различие: членов семейства можно, почти по Чехову, подразделить на «тонких» и «толстых» или на «тяжелых» и «сверхтяжелых» (по принятой в науке классификации).

    При создании периодической системы Д. И. Менделеев построил все элементы в шеренгу по атомному весу, или, применяя современную терминологию, по их атомным номерам. Семейство платиноидов оказалось в этом строю разорванным на две триады: рутений (№ 44), родий (№ 45), палладий (№ 46) и осмий (№ 76), иридий (№ 77), платина (№ 78). Разделяют их тридцать иных элементов, и, следовательно, место этим триадам в разных периодах системы.

    Обнаружилась неоднородность семейства и по другому важному признаку валентности. Она определяет поведение веществ в химических реакциях, и Менделеев по этому критерию выделил в системе группы, объединив в каждой из них элементы с одинаковой максимальной валентностью, равной номеру группы.

    Данные о валентности показывают, что и по этому признаку семейство должно быть расчленено, но уже не на триады, а, так сказать, поперек, с отделением восьмивалентных рутения и осмия, а также шестивалентного иридия от остальных.

    Так существует ли вообще семейство?

    Веским аргументом в его защиту явилось то, что триады при всей их разобщенности во многом сходны, и у каждого «легкого» элемента есть очень на него похожий тяжелый «брат», занимающий в строю аналогичное место. Поэтому триады могут быть объединены и разделены по вертикали на три диады. Так, «левофланговый» первой триады рутений по многим признакам сходен с «левофланговым» второй триады осмием, оба они отличаются от остальных своей структурой, самой высокой температурой плавления, наибольшей твердостью и хрупкостью, устойчивостью к кислотам и легче всех других соединимы с кислородом. Такую же близость обнаруживают и следующие пары: родий с иридием, палладий с платиной. Отчетливо и то, что свойства элементов в обеих триадах изменяются закономерно — от диады к диаде возрастает химическая стойкость, снижаются температуры плавления и твердость.

    Все это, как и многочисленные примеры сходного поведения платиноидов при различных химических реакциях, подтверждало, что они не случайные соседи в природе, а подлинные «родственники», и это в периодической системе должно быть отображено. При ее построении выявилось, что каждая триада имеет на своем правом фланге «законных» соседей: палладий (№ 46) граничит с серебром (№ 47) и платина (№ 78) с золотом (№ 79) а на противоположном фланге соседей не оказалось, там рядом с рутением (№ 44) и осмием (№ 76) пустовали «квартиры», предназначенные для элементов № 43 и № 75.

    Какими они окажутся? Может быть, где-то затаилось еще два платиноида и их семейство включает не шесть, а восемь членов и состоит не из двух триад, а из двух тетрад?

    Возможно и другое. Судя по положению в периодической системе, могут быть в родстве с марганцем и молибденом эти неизвестные элементы. Менделеев условно назвал их экамарганцем и двимарганцем (на санскритском языке «эка»-один, «дви»-два), показав таким образом, какое предположение он считает более вероятным.

    После долгих раздумий, отвергнув много вариантов, Менделеев признал, что черты сходства между платиновыми металлами являются определяющими, а различия еще ждут своего объяснения.

    Менделеев решил отнести все платиноиды, вне зависимости от установленной максимальной валентности, к VIII группе и разделить их в отличие от остальных на три подгруппы. Так он отразил особенность «триадного» строения семейства, а симметричным расположением триад в 5 и 6 периодах показал их взаимосвязь.

    Все это вызвало споры. Многие исследователи считали, что Менделеев поспешил, согласившись с Клаусом. Предполагая, что Озанн был на верном пути, они продолжали поиск новых элементов в платиновой руде, и это не раз порождало сенсации. В 1877 году был обнаружен «дэвий», а два года спустя «уралий», затем «люций» и «ниппоний». В 1903 году родился «америлий», а в 1911-«канадий». Ни одно открытие не подтвердилось, за новый элемент принимали различные соединения иридия и родия (что иллюстрирует, как трудно их изучение).

    Лишь в 1925 году, направив поиск по иному пути, Вальтер Ноддак и Ида Такке (впоследствии Ноддак) после трех лет упорного труда выявили сначала в молибденовой, а затем и в марганцевой руде ничтожное содержание элемента № 75-рения. А № 43 оставался загадкой до 1937 года, когда итальянский физик Эмилио Сегре доказал его существование и назвал технецием (искусственным, по-гречески), что вполне отвечало сути: элемент был получен при бомбардировке молибдена ядрами тяжелого водорода-дейтерия в циклотроне.

    Рений и технеций по ряду признаков оказались близкими к молибдену и марганцу, и это завершило спор о численности платинового семейства. Другой спор — о его месте в периодической системе — продолжается, и попытки модернизировать таблицу Менделеева делались неоднократно. Получил распространение, например, ее вариант, где в VIII группе оставлены только рутений и осмий, а остальные платиновые металлы вместе с кобальтом и никелем помещены по соседству, но за пределами таблицы (что ничего не меняет по сути).

    Причины различной валентности, как и многие иные особенности элементов, Д. И. Менделеев при уровне знаний его времени установить не мог и ограничился такими словами: «Легко предположить, но ныне пока еще нет возможности доказать, что атомы простых тел суть сложные вещества, образованные сложением некоторых еще меньших частей…»

    Все это уже доказано, и накопленные знания позволяют объяснить многое.

    Современные представления об атомном строении платиновых металлов отображены в таблице 2, Она требует некоторых пояснений.

    «Лицо» элемента и его место в периодической системе определяет заряд ядра — число протонов, которое присуще только ему и неизменно, пока живет атом. Количество нейтронов в ядре фиксировано не так строго, оно может быть в пределах, указанных в таблице. Это обусловливает существование изотопов, атомов-«близнецов», одинаковых по химическим свойствам, но разных по атомной массе и продолжительности жизни.

    Все природные изотопы платиновых металлов стабильны, являются долгожителями и мирно сосуществуют. Однако теперь к ним добавились «рукотворные» (радиогенные) изотопы, которые живут мало, но представляют для человечества большую опасность (о них тоже будет еще разговор).

    Изучение строения атомов выявило причину уникальной тяжести платины, иридия, осмия и резкого их отличия по этому признаку от остальных «родственников».

    «Электронное облако», окружающее ядро, почти невесомо, и масса атома определяется суммой протонов и нейтронов. Она у металлов триады платины почти вдвое больше, чем у их аналогов триады палладия. А объем атомов у всех платиноидов почти одинаков и по сравнению со многими другими металлами очень мал. Плотность вещества определяет соотношение массы атома и его объема. Масса наиболее распространенного изотопа платины — 195, а золота 197, но платина тяжелее потому, что ее масса «втиснута» в меньший атомный объем (он равен 9,1 см2/г-атом, а у золота-10,2). У осмия и иридия соотношение между массой и объемом атома еще лучше-соответственно 190:8,5 и 192:8,6, и они чемпионы. Наиболее насыщено протонами и нейтронами ядро урана-238, но «квартира» велика — 12,6 см2/г-атом, и поэтому элемент с самым тяжелым в природе ядром соревнование проигрывает, его плотность «всего лишь» 19,0 г/см3.

    Устойчивость любого атома обусловливается равенством между числом положительно заряженных протонов ядра и окружающих его электронов, несущих отрицательный заряд. Строение «электронного облака» неравномерно, орбиты движения ориентированы в пространстве и группируются в оболочки, каждая из которых предельно может вмещать 2n2 электронов, где п — номер оболочки, считая от ядра. (Первая оболочка вмещает 2, вторая 8, следующие 18, 32, 50 и т. д. электронов. В таблице 2 показано их распределение на различных энергетических уровнях каждой оболочки.)

    Как известно, металлы отличаются от неметаллов малым числом электронов на внешней оболочке, что обусловливает их легкий отрыв и превращение «нейтральных» атомов в положительно заряженные ионы. Интенсивность таких процессов во многом определяется строением «предвнешних» оболочек. По этому признаку выделяют «непереходные» элементы — у них на всех внутренних оболочках полный комплект электронов, они как бы «связаны» и неспособны помогать своим коллегам, «сражающимся» на передовой.

    Такие элементы не стойки и легко утрачивают самостоятельность. В отличие от них у элементов, называемых переходными, не все внутренние уровни заполнены электронами, и они способны перемещаться, становиться валентными. При этом из глубин атома как бы происходит приток свежей «силы». Установлено, что среди переходных элементов лучшими технологическими свойствами обладают те, у которых не полностью заполнен уровень d (вольфрам, молибден, рений и др.). К таким d-элементам принадлежат и все платиновые металлы (с оговоркой, что палладий имеет такое строение только в ионизированном состоянии). Важное отличие платиноидов, а также золота н серебра от других d-элементов заключается в том, что у них при малом заполнении уровня d совсем не заполнен «предвнешннй» уровень f. Такое сочетание обусловливает особо широкий диапазон перемещения электронов и большую энергию связей. Это отличает благородные металлы от всех иных.

    Строение атомов объясняет загадочную особенность рутения, выявленную еще Клаусом. Оказалось, что по разнообразию валентности рутений — чемпион. Известны соединения, в которых она равна нулю- Ru(CO)n, единице-Ru(CO)nBr, двум, трем, четырем-RuO2 (это наиболее распространенный вид соединений), а также пяти… и т. д. до восьми — RuO4. Но и этими — девятью! валентностями его способность, как оказалось, не ограничена. Клаусом были получены соединения, строение которых не удавалось объяснить обычными представлениями о валентности.

    В конце прошлого века швейцарский химик А. Вернер, развив представления Клауса, создал основы теории комплексных соединений, в которых центральное место занимает атом металла-рутения, платины и других «склонных к комплексообразованию», способных крепко удерживать не только отдельные атомы, но и лиганды — различные их соединения (радикалы, молекулы неорганические и органические). Строение таких комплексов определяется координационным числом, отражающим, какое количество лиганд центральный атом может удержать.

    Представления Вернера получили обоснование и блестящее развитие в трудах Льва Александровича Чугаева. Он создал много комплексных соединений платины, палладия, никеля и установил, что все они по своей структуре аналогичны органическим соединениям. Стереохимическими построениями он выявил закономерность расположения лиганд в пространстве и обосновал «правило циклов», позволяющее целенаправленно создавать наиболее устойчивые комплексы.

    В дальнейшем развитии химии комплексных соединений очень велика роль академика Ильи Ильича Черняева и многих других советских исследователей (Ю.Н.Голованова, А. А. Гринберга, О. Е. Звягинцева, Б. Г. Карпова, В. В. Либединского, Н. К. Пшеницына, Н. М. Синицына, С. М. Старостина, П. И. Рожкова, Э. X. Фрицмана…). Они не только усовершенствовали методы получения платиновых металлов, но и создали сотни их соединений, не существующих в природе, расширив тем самым возможности химии и техники. Глубоко разработана ими теория комплексных соединений. Установлено, что платиновые металлы — лучшие комплексообразователи, вступающие в сложные связи — ковалентные, дативные, в которых участвуют не одна, а несколько пар электронов. Причина этого — незастроенность уровня d, она особо резко выражена у рутения, что и определяет его «чемпионство» (уже получены нитрозосоединения рутения с восемнадцатиэлектронной конфигурацией молекул, обладающие уникальной термической и химической стойкостью). Имеют важное применение и комплексные соединения родня, но на первом месте и по количеству (их сотни), и по практическому значению комплексы, основу которых составляет платина.

    Значение комплексных соединений в науке и технике так велико, что к числу важнейших «заслуг» платиноидов надо в один ряд с открытием периодического закона и явлений катализа поставить и координационную химию.

    С помощью рентгеновских, электронных и других способов проникновения в глубь вещества установлено, что многие свойства обусловлены не особенностями отдельных атомов, а строением их совокупности — кристаллов. Они возникают под воздействием сил связи между атомами и характерны расположением их в определенном порядке, который неодинаков по разным направлениям. Чем интенсивнее эти силы, тем плотнее соприкасаются атомы. Самая плотная их упаковка достигается при кубической гранецентрированной структуре, где каждый атом окружен 12 ближайшими соседями-восемь атомов расположены в вершинах куба и еще шесть по одному в центре каждой его грани. Такое строение имеют платина, иридий, палладий, родий, а также золото, серебро, свинец и некоторые другие металлы. Рутений и осмий обладают менее совершенной гексагональной структурой, что и обусловливает меньшее их по сравнению с другими членами семьи «благородство».

    Атомы металлов, если их сравнивать с атомами других элементов, обладают наибольшей силой связи. Вследствие этого они сближены так, что их внешние оболочки перекрывают друг друга. Это облегчает отрыв валентных электронов и превращение в узлах кристаллической решетки нейтральных атомов в положительно заряженные ионы. Оторвавшиеся электроны мчатся с непостижимой скоростью (20 000 км/сек), бомбят ионы, превращая их на миг в атомы и снова ускользая. Непрерывный обмен «коллективизированными» электронами обусловливает пластичность металлов. При относительном перемещении ионов связь их с такими электронами не ослабевает, и поэтому изменение формы тела происходит без разрушения. Платина в этом отношении чемпион, предел, до которого может быть растянута ее нить, еще не установлен.

    Высокая электропроводность металлов также обусловлена «коллективизированными» электронами. В «нейтральном» металле они перемещаются по всем направлениям равномерно, но при подключении к источнику электроэнергии их движение становится направленным к положительному полюсу и скорость возрастает. По сравнению с веществами, не имеющими свободных электронов, проводимость металлов больше в 1025 раз. Наилучшей проводимостью обладают серебро, медь, золото. Платиноиды им уступают, но у них самое низкое значение величины удельного электросопротивления.

    Способность металлов проводить теплоту при нагревании пропорциональна их электропроводности, потому что тепло тоже в основном передается электронной средой. У неметаллов, в которых тепло распространяется лишь колебанием ионов и атомов кристаллической решетки, теплопроводность в тысячу раз ниже. При нагреве возрастают колебательные движения ионов и соответственно затрудняется движение «коллективизированных» электронов. Это приводит к росту электрического сопротивления (у платиноидов оно возрастает в 3–5 раз при температурах, превышающих 1200 °C). С повышением температуры теплопроводность снижается у всех платиновых металлов, за исключением самой платины (объяснение этому еще не найдено).

    Энергией межатомных связей определяется тугоплавкость металлов качество, необычайно важное для современной техники, работающей в условиях высоких температур: головные части ракет, пробивающие плотные слои атмосферы, сопла ракетных двигателей и газовых турбин и т. д. Чем выше температура, тем сильнее раскачивается кристаллическая решетка, и металлы, имеющие, например, гексагональное строение, расширяясь резко неодинаково по различным направлениям, быстро разрушаются. Среди металлов наиболее устойчивой, кубической структуры самые выносливые те, у кого энергично работают электроны с уровня d. Чемпион по тугоплавкости-вольфрам (3380 °C), но он не жаростоек. Уже при 700 °C вольфрам начинает «потеть», покрывающая изделия прочная пленка его окисла улетучивается.

    Поэтому он чемпион лишь в условиях вакуума или в атмосфере инертных газов, а во всех более трудных условиях незаменимы платиноиды.

    Долгое время металлы удавалось сопоставить только по их физическим свойствам (плотность, твердость, магнитность и т. д.). Этого недостаточно, чтобы предвидеть их поведение при различных химических процессах. Разработать объективный критерий для сопоставления «силы» металлов, их активности, удалось харьковскому профессору Н. II. Бекетову. В 1865 году он опубликовал i «Исследования над явлением вытеснения одних элементов другими», в которых приведены результаты воздействия водорода на соли различных металлов, что позволило построить «вытеснительный ряд» по скорости и направленности процесса (теперь его называют «электрохимическим рядом напряжении», последовательность в котором определяется величиной энергии, необходимой, чтобы оторвать от атома один электрон). По трудности этого отрыва платина вместе с золотом стоят на самой высокой ступени. Бекетов присудил платине «пальму первенства» как сочетающей в себе химическую стойкость золота, тепло- и электропроводность серебра и превосходящей их по механической прочности и жаростойкости.

    Познание строения вещества несколько прояснило причины «магического» воздействия катализаторов. Установлено, что для них типична разнообразная конфигурация кристаллов, ступенчатость их строения, расположение атомов не только на плоских гранях, но и на ребрах, где они окружены меньшим числом соседей и способны взаимодействовать особенно энергично. Как показали специальные исследования, у платины, например, активность атомов, расположенных на ребрах, в 60 раз выше, чем у тех, что находятся на гранях.

    Благодаря высокой энергии поверхностных электронов, катализаторы при соприкосновении с другими веществами вступают в мгновенные взаимодействия, разрывают их молекулы и тут же восстанавливают свой состав (такие взаимодействия называют промежуточными).

    Каталитические свойства наиболее ярко проявлены у d-элементов; среди них платина резко выделяется широтой энергетического спектра атомов и разнообразием их позиций, что и определяет се замечательную активность при самых разнообразных процессах.

    У многих других катализаторов, в том числе и у платиноидов, эти качества проявлены более узко, что и обусловливает избирательность их каталитического воздействия.

    Далеко еще не все особенности платиноидов получили свое объяснение, в их числе феноменальная способность рутения и палладия сорбировать водород (до 1500 кубических сантиметров его в одном кубическом сантиметре), но в целом успехи в познании платиновых металлов очень велики и значительно расширили возможности рационального их использования.

    В НАШИ ДНИ

    Платиновые металлы существуют теперь, можно сказать, в трех ипостасях: они — сокровища (по мнению людей дальновидных, более надежные, чем золото!), они-труженики (незаменимые во многих областях техники!) и они «стратегический резерв» (всевозрастающий!).

    Поэтому их бережно хранят, неохотно расходуют и публикуемые о них сведения неполны и нередко противоречивы.

    Мировое потребление платиновых металлов, например, за 1975 год канадские и английские горные журналы оценивают в 150–200 тонн (из них около 30 тонн получено за счет вторичной переработки изделий, а остальное из недр). Как доказательство надежности этих цифр, а также для характеристики «кто есть кто» на современном платиновом рынке, в этих журналах приведены данные международных аукционов. Всего было куплено в 1975 году (в тоннах): 175, в том числе платины-105, палладия-51, остальных платиноидов-17. Больше всех купила Япония-64,1, за ней следуют США-51,6, ФРГ-22,2, Швейцария-11,2, Нидерланды-8,3, Франция-7,5, Великобритания — 6, прочие страны — около 2.

    Среди продавцов на капиталистическом рынке господствует ЮАР-до 100 тонн в год, за ней следует Канада-до 15 тонн в год, а все остальные (США, Колумбия, Перу и другие) — всего сотни килограммов.

    И в последующие годы ситуация на рынке сохранялась примерно в таком же виде, с той же иерархией продавцов и покупателей. В целом же рост потребления платиновых металлов в капиталистическом мире происходит примерно на 5 процентов в год, причем тенденция является устойчивой, за последние полвека добыча их возросла раз в тридцать, далеко опередив по темпам роста добычу большинства других полезных ископаемых (например, добычу золота за тот же период удалось увеличить лишь в 2–3 раза). Успех в отношении платиновых металлов обусловлен освоением крупных платформенных месторождений; рост добычи сопровождался и существенным изменением цен.

    По данным «Канадского горного журнала» (№ 2, 1977), рыночные цены в 1976 году колебались в таких пределах-в долларах США за 1 унцию (31,1 грамма): золото 101–137, платина 162–180, палладий 50–60, родий 300–450, иридий 300–400 (в предшествующем году иридий стоил 600 долларов).

    Соотношение — платина дороже золота примерно в полтора раза установилось после второй мировой войны и сохраняется довольно устойчиво, сами же цены на драгоценные металлы неудержимо растут. В начале 1980 года за унцию золота на биржах капиталистических стран уже платили по 500 долларов, а платина впервые превысила 700-долларовый рубеж (соответственно взлетели цены и на все платиноиды).

    Как показывают биржевые бюллетени, платиновые металлы устойчиво остаются в числе дефицитных, и запасы у продавцов обычно не превышают полугодовой потребности, а спрос нередко превышает предложение. Это, впрочем, не всегда обусловлено реальными экономическими потребностями. Так, в 1976 году управление чрезвычайной готовности США внезапно увеличило свой запас платины с 14 до 41 тонны, а палладия с 39 до 76 тонн.

    В связи с финансовыми бурями, сотрясающими экономику капиталистических стран, получили известность слова английского финансиста Бутби о том, что большинство людей больше не верит ни во что, а остальные верят только в драгоценные металлы. И запас их, лежащий мертвым грузом в хранилищах банков, неуклонно растет. Данные о количестве платиновых металлов, хранимых как сокровища, очень противоречивы. Более подробная информация имеется о промышленном использовании этих металлов. Если, например для Японии и Швейцарии характерна узкая специализация — использование платины главным образом для ювелирных изделий и приборостроения, то для США, ФРГ, Франции и некоторых других стран характерен широкий и весьма изменчивый спектр применений. В 1973 году в США расход платины (21 тонна) по отраслям промышленности распределялся так: (в процентах) химическая-35, нефтеперерабатывающая- 18, электротехническая — 17, стекольная — 11, автомобильная — 10, медицинская — 4, ювелирная — 3, прочие — 2.

    Использование палладия достигло тогда рекордной величины — 32 тонн, и в дело пошли запасы этого металла, цена на него взлетела.

    А спустя три года картина изменилась так: платины израсходовали на 6 тонн больше, и главным потребителем — более 50 процентов! — стала автомобильная промышленность. Несколько увеличился расход платины в стекольной промышленности, прежний уровень сохранился в электротехнической, а в химической и нефтеперерабатывающей снизили расход платины почти вдвое за счет применения рениево-платиновых катализаторов и других усовершенствований.

    Технический прогресс обусловил и быстрое затухание палладиевого «бума», взамен электромеханических переключателей распространение получили электронные; был создан серебро-палладиевый сплав, обеспечивающий надежную работу контактов при малом расходе палладия. В результате всего этого расход палладия снизился в США с 32 тонн в 1973 году до 19,4 тонны в 1976-м, а в Японии-с 16,2 до 6 тонн, и угроза палладиевого голода была устранена. В дальнейшем спрос на палладий снова начал возрастать главным образом в связи с более широким использованием его в каталитических процессах.

    Примерно так же меняется спрос и на другие платиновые металлы, но общая тенденция сохраняется- всех их требуется все больше и более высокого качества. Характерная черта наших дней-огромная потребность на аванпостах техники в чистых материалах. Их подразделяют на технически чистые, содержащие не менее 99,9 процента основного вещества, химически чистые, в которых его 99,99 процента, и особо чистые у которых три девятки после запятой. Платиновые металлы выпускают в соответствии с этими стандартами платину и палладий — пластичные, легкодеформируемые — в виде слитков, размером 100х65х35 миллиметров, а все остальные — в виде порошка, с размером зерен до 1 миллиметра. Для всех сортов обязательным является равномерное распределение примесей, потому что концентрация, например, кремния, превышающая 0,005 процента, приводит к хрупкому разрушению платины в напряженных термодинамических условиях работы.

    Получение особо чистых платиноидов (методом зонной плавки) замечательное достижение, оно открыло возможность познать подлинные их свойства. В монокристаллах даже самый труднодеформируемый металл — рутений становится пластичным, принимает любую форму.

    Чемпионы среди катализаторов. В стремлении ускорить химические процессы, расширить их возможности все глубже изучают и шире используют каталитические свойства различных веществ. Катализ теперь — ведущий метод химической технологии. Подсчитано, что более трехсот важных процессов осуществляется в промышленности с его помощью и в год расходуются более 800 тысяч тонн различных катализаторов. Среди них платина (по количеству) на одном из последних мест, но качественные ее показатели так высоки, что она бессменный чемпион-долгожитель. На ее применении базируется технология самых «многотоннажных» и трудных химических производств. Нет нужды перечислять все ее заслуги, ограничимся тремя: платина спасает человечество от азотного и углеводородного голода, она защищает от деятельности «маленьких вулканов»- опасного творения нашего века. Поясним это.

    Мрачные прогнозы об истощении запасов нефти, платины, меди и других полезных ископаемых не раз уже становились мировой сенсацией, казались реальными, но открывались новые месторождения — и в мире снова на некоторое время становилось спокойно. Подтвердился только один такой прогноз-относительно селитры. Ее месторождения — крупные в Чили, более мелкие в Индии, Средней Азии — в начале нашего века уже были почти отработаны, а новых найти нигде не удалось. Минералы селитры — азотнокислые соли натрия, калия, аммония — единственное в недрах сырье для получения азотной кислоты и множества ее производных, среди них таких важных, как удобрения и взрывчатые вещества.

    Выход остался только один — осваивать «надземное» месторождение, воздушный океан. Азота в воздухе 78,08 процента, в десятки раз больше, чем в селитре, а запасы практически почти безграничны. Однако свободный азот инертен, соединить его с кислородом, создать окись, необходимую для получения кислоты, тогда удавалось лишь при температуре пламени вольтовой дуги (3000 °C).

    В 1902 году был построен завод, использующий дешевую энергию Ниагарского водопада. Днем и ночью на 185 вольтовых дугах «сжигали» азот, но выход его окислов не превышал 2 процентов, а затраты электричества были так велики, что этот путь пришлось признать тупиковым. Всевозрастающая нехватка удобрений вела к снижению урожайности, и азотный голод грозил голодом всеобщим.

    Выход был найден лишь в следующем десятилетии, когда Ф. Габер и К. Бош разработали аммиачный метод связывания азота, применив платиновые катализаторы. Свободный азот выделяют испарением из жидкого воздуха и при высоких температуре и давлении (500 °C, 800 атм) соединяют с водородом в присутствии катализатора.

    Полученный аммиак смешивают с кислородом, нагревают почти до 1000 °C и под давлением (10 атм) прогоняют в контактном аппарате сквозь ажурные, имеющие 3–4 тысячи отверстий на одном квадратном сантиметре, сетки из тройного сплава, в котором 93 процента платины, 4 процента палладия, 3 процента родия. Добавка палладия несколько увеличивает активность катализатора и снижает его стоимость, а родий увеличивает срок службы сеток.

    Из аммиака и кислорода в контактном аппарате образуется окись азота и вода. Химизм процесса представляют так: высокая температура ослабляет прочность молекул кислорода и при соприкосновении с платиной ковалентная связь О-О рвется и взаимодействие приводит к образованию связей Pt-О. Платину обволакивает кислород, но эта связь непрочна, ее рвут молекулы аммиака; сами они при этом распадаются на водород и азот, которые под энергичным воздействием активированного кислорода образуют окись азота и воду. Они слабо адсорбируются на платине, их смывает газовый поток, а на катализаторе снова накапливается кислород, реагируя с новыми порциями аммиака. Получение окиси азота таким способом требует затраты энергии в сто раз меньше, чем в вольтовой дуге. Процесс идет быстро, и его можно организовать в любом месте, была бы платина. Заменить ее более дешевым катализатором удалось только при получении аммиака. Для синтеза окиси азота платина остается незаменимой. Только на ней процесс идет без побочных реакций. Все иные катализаторы не защищают от образования закиси азота и других веществ, резко снижающих качество конечного продукта.

    Мировое производство связанного азота уже приближается к 25 миллионам тонн в год, и около 80 процентов его расходуют на получение азотных удобрении, но и этого огромного количества мало. Подсчитано, что для получения оптимальных урожаев на посевных площадях земного шара надо затрачивать около 100 миллионов тонн удобрений. Применяемая уже полвека технология-дорогая и сложная, не обеспечивает ликвидации азотного голода. Усилий для создания новых методов, более экономичных и быстрых, затрачивается очень много. Перспективно получение окиси азота из горячей плазмы в реакторах — плазмотронах или из холодной плазмы в ускорителях электронов высоких энергий, но о практическом применении таких способов говорить еще рано. Также сулит успех использование «патента» бактерий, связывающих азот. Установлено, что для его активизации бактерии тоже используют катализаторы — микродозы переходных металлов и, по-видимому, всем из них предпочитают платину.

    Расход ее в промышленности на «связывание» азота оценивают сейчас в 15–20 тонн в год, и вряд ли в ближайшем будущем, даже если «патент» бактерий будет широко использован, удастся расход уменьшить.

    Почти одновременно с азотным человечество ощутило и углеводородный голод, порожденный распространением двигателей внутреннего сгорания. Для того чтобы обеспечить их «питание», был создан термическим крекинг-разделение нефти на фракции по температурам кипения. При этом выход наиболее ценной легкой фракции-бензина был мал (ароматические углеводороды, из которых его удается получить, обычно занимают подчиненное место в составе нефти).

    Академик Н. Д. Зелинский в 1911 году установил что в присутствии платины происходит ароматизация нефти, входящие в ее состав нафтеновые углеводороды дегидрируются, отщепляют водород и могут быть быстро превращены в ароматические углеводороды — бензол, толуол, ксилол и их производные.

    Реализация идеи Зелинского привела к замене термического крекинга каталитическим платформингом — роль в нем платины подчеркнута самим названием.

    Этот высокопроизводительный способ обеспечивает переработку колоссальных количеств нефти. Проходя сквозь реактор, она соприкасается с мелкими (до 5 миллиметров), покрытыми дисперсной платной шариками из окиси алюминия. Платина по весу составляет в них менее одного процента, но поверхность соприкосновения с нефтью очень велика и мгновенно происходит чудо: из нафтеновых фракций, которые иными способами не поддаются переработке, удается получить бензин и ароматические углеводороды, незаменимое сырье для синтеза каучука, нейлона, полиэфирных волокон, различных смол — всего сейчас из нефти получают более 5 тысяч синтетических продуктов. Каталитический платформинг сделал возможным получение бензинов высшего качества, с очень высоким октановым числом, что определило возможность увеличить мощность двигателей и уменьшить их размеры.

    Механизм катализа нефти, по-видимому, определяется мгновенной жизнью комплексных соединений платины и их преобразованием в углеводороды иной структуры.

    За последние годы удалось несколько снизить расход платины на нефтехимический синтез применением риформинга — метода переработки под высоким давлением водорода с меньшей затратой катализатора, но и при этом затрачивается в мире не менее 5 тонн платины в год.

    Автомобили по темпу «рождаемости» обгоняют людей, и нет оснований надеяться на снижение темпа. Сейчас по планете бегает более 300 миллионов автомобилей, и каждый из них — это «маленький вулкан» выбрасывающий за год в атмосферу примерно 800 килограммов окиси углерода, 200 килограммов различных углеводородов и 40 килограммов окислов азота (которые, к сожалению, использовать невозможно). Кроме того, каждый автомобиль на бегу поглощает кислорода, как 300 человек. Допустимое содержание окиси углерода — 0,03 милиграмма на литр воздуха, и нетрудно подсчитать, в каких масштабах портят его «маленькие вулканы» на колесах.

    Полвека назад авторы «Золотого теленка» призывали пешеходов любить и спасать. Теперь этот призыв утратил юмористический оттенок: спасать приходится не только пешеходов, но и автомобилистов — загазованность улиц стала реальной опасностью. Способы борьбы с нею ясны, но трудно осуществимы. Кардинальное решение только в отказе от бензина, замене его иным, безвредным топливом. А пока реальный путь — улучшение качества бензина и установка на автомобилях «дожигателя» — каталитического нейтрализатора отработанных газов, В нем вредные газы выгорают, соприкасаясь с керамическими шариками, покрытыми дисперсной платиной.

    Каталитические нейтрализаторы получают все более широкое распространение. Например, в США на их изготовление в 1976 году было израсходовано около 15 тонн платины-больше, чем на все другие виды катализа, вместе взятые. Ведутся в этом направлении работы и в нашей стране. Стоимость нейтрализатора около 300 рублей (см. «Литературную газету» от 31 января 1979 года).

    Вместе с платиной в каталитических нейтрализаторах применяют палладий и другие платиноиды. Надо отметить, что их роль в технике катализа велика и все возрастает. Если платина — универсальный катализатор, то платиноиды, продолжая спортивные сравнения, можно назвать чемпионами в отдельных категориях. Так, палладий — лучший ускоритель реакций соединения различных веществ с водородом, что объясняется уникальной его способностью удерживать этот газ. Осмий эффективнее, чем платина и другие катализаторы, ускоряет гидрогенизацию органических веществ. Рутениевые катализаторы используют для получения глицерина и других многоатомных спиртов из целлюлозы, а также для синтеза синильной кислоты. Иридий в сочетании с никелем лучше других действует при синтезе различных веществ из ацетилена и метана. Этот перечень можно продолжать долго.

    Катализаторы, непосредственно не участвуя в реакциях, казалось бы, должны служить вечно, но это далеко не так, потери их при соприкосновении с другими реагентами велики, несмотря на все защитные меры.

    В общем расходе платиновых металлов катализаторы составляют почти половину, и доля их растет, опережая все иные виды использования.

    Незаменимая посуда. Платиновые сервизы давно уже заняли свое место в музеях, но иная посуда из этого металла — лабораторная, технологическая остается незаменимой. В длинном ее перечне на первом месте по значению вот уже два столетия стоят тигли. «Без них, — как отметил еще Ю. Либих в „Химических письмах“, — состав большинства минералов оставался бы неизвестен».

    Сейчас даже трудно представить себе, как мизерны были знания о Земле до появления платиновых тиглей. В земной коре преобладают силикаты. Многие из них удается разложить, перевести в раствор только предварительно сплавив с содой или подвергнув длительной обработке плавиковой кислотой. Только платиновая посуда выдерживает необходимые для анализа силикатов температуры, воздействие паров фтора и других особо активных реагентов.

    Применение платиновой посуды расширяло возможности познания, но сопровождалось быстрой гибелью драгоценных тиглей. Постепенно выявилось, что они не универсальны, в них нельзя плавить металлы или вещества, способные их выделять, так как при этом образуются сплавы с платиной. Запрет пришлось распространить на свободные бор, кремний, фосфор, а также на едкие щелочи, цианиды, сульфиды — все они сокращают срок жизни тиглей. К этому же приводит и неумелый нагрев, при очень высокой его температуре платина начинает поглощать углерод из пламени, становится ломкой. Опасно для нее и низкотемпературное, коптящее пламя. Должен быть тигель защищен и снаружи, только платиновая или кварцевая подставка для этого пригодны.

    Добавки к платине иридия, родия, рутения в дальнейшем сделали лабораторную посуду более долговечной и универсальной, а теперь удалось создать сплавы которые не боятся лаже мышьяка, фосфора и других еще недавно «запретных» веществ.

    Ни одна лаборатория не обходится без платиновой посуды, но куда больше ее на заводах, там можно увидеть платиновые тигли до 30 килограммов!

    Уменьшить расход платины помогает платинирование — гальваническое нанесение тончайшего защитного слоя на химическую аппаратуру, что особенно существенно при крупных ее размерах (например, таких, как резервуары атомных реакторов).

    По расходованию платины на посуду (это надо подчеркнуть, чтобы не спутать с иным использованием) сейчас на первом месте, по-видимому, стекольная промышленность.

    Стекло, железо и бетон — важнейшие современные конструкционные материалы. В этой триаде стекло патриарх, его уже применяли, когда еще не знали железа, не говоря уж о бетоне.

    С веками стекло — строительное, тарное, художественное, лабораторное использовалось все шире и разнообразнее. Достижения нашего времени заключаются не столько в расширении ассортимента, сколько в механизации производства, применении различных стеклоформирующих машин, положивших конец господству стеклодувной трубки, изобретенной еще до новой эры. Благодаря этому появилась возможность производить стеклянное волокно-тончайшие нити, внешне похоже на шелковые, но не сопоставимые с ними по своим свойствам. Они обладают высокой химической, термической и механической стойкостью, не пропускают ток, прозрачны и способны образовывать единое целое со многими другими материалами, особенно с синтетическими смолами. Поэтому современную технику уже невозможно представить себе без стеклопластиков, различных электроизоляционных материалов, фильтров и многих других изделий, основу которых составляют стеклянные волокна. У них мало конкурентов и по качеству и — что очень существенно — по стоимости.

    Стеклянные нити получают продавливанием расплава сквозь мельчайшие отверстия фильеров. Казалось бы, дело простое, если не учитывать, что необходимы нити толщиной 3-10 микрометров. Еще недавно такие нити удавалось создавать только жукам-шелкопрядам!

    Получение обычного стекла ведут при температуре лишь незначительно превышающей 1000 °C, и уже тогда расплав становится агрессивным, он корродирует все, с чем соприкасается. А для получения тончайших нитей, необходимых для стекловолокна, оптимальным является температурный интервал 1200–1450 °C. Кремнекислый расплав при таком нагреве становится яростным агрессором, лучшие легированные стали, из которых пробовали изготовлять стеклоплавильные сосуды, выдерживают лишь десятки часов работы и то при температуре, не превышающей 1300 °C.

    Уровень тепловых напряжений в стеклоплавильных сосудах так высок, что не выдержали экзамена и все известные керамические и металлокерамические материалы.

    Единственной и незаменимой на протяжении истории получения стекловолокна, насчитывающей уже половину века, остается платина с небольшой (7-10 процентов) добавкой родия.

    Этот сплав выдерживает тысячи часов нагрева до 1450 °C, резкие смены температуры, он стоек против коррозии и других невзгод. Потери платины за счет возгонки и растворения в стекломассе составляют около 200 граммов на тонну стекловолокна, казалось бы, немного, но если учесть быстрый рост объемов производства и цены на платину, станет понятным, почему патентуются все новые специализированные сплавы, в которых платину пытаются заменить золотом, палладием, еще чем-либо. Пока достигнуты успехи лишь в комбинировании различных сплавов, применяют, например, «тройные» фильерные пластины: внутренний слой, прилегающий к расплаву, делают из чистой платины (она эластична и предохраняет от трещин), средний слой-жаропрочный, платинородийиридиевый и наружный — золотой, оптимальный для формовки стекловолокна.

    Потребление стекла в развитых странах уже составляет более 30 килограммов в год на каждого человека и быстро возрастает, особенно за счет стекловолокна. Таким же темпом увеличивается производство искусственных волокон из полиамидных смол. Их выдавливают сквозь тысячи тончайших отверстий, которые должны неизменно сохранять свои размеры и форму в трудных условиях работы. Поэтому, несмотря на все меры экономии, расход платиноидов на жаростойкие изделия лишь возрастает.

    Все больше требуется платиновой посуды и для таких сравнительно холодных процессов, как создание сверхчистых веществ. Известно, что даже один «чужеродный» атом на миллион нарушает полупроводниковые свойства кристаллов. Для того чтобы посуда не стала источником инфекции, применяют платину, чистота которой определяется двумя девятками до запятой и тремя девятками после (кстати говоря, получение такой сверхчистой платины — одно из замечательных технических достижений наших дней).

    Судьбы эталонов. Метрическая система мер и ее эталоны были созданы с девизом «на все времена, для всех народов». Он осуществился лишь в отношении системы, но не ее эталонов. Система действительно стала интернациональной и на все времена. А у ее эталонов судьба иная. Первые эталоны, изготовленные из платины в 1795 году, были в 20-х годах XIX века заменены платино-иридиевыми. Этот сплав (9Pt1Ir) поныне считается самым неизменным, не стареющим. Тем не менее и эти эталоны устарели, так сказать, морально.

    Современная техника требует высокой точности измерения всех параметров, ничтожные ошибки нередко приводят к трагическим последствиям. Это обусловило развитие особой науки — метрологии, привело к созданию многоступенчатой иерархии эталонов. «Родоначальники» метрической системы хранятся в Севре — предместье Парижа, который называют «метрологической Меккой». Там находится Международное бюро мер и весов, туда для сверки периодически совершают паломничество из других стран эталоны-копии.

    Государственные эталоны нашей страны (метр № 28, килограмм № 9) хранятся в Ленинграде, на Московском проспекте, в подвалах здания, где в 1893 году под руководством Д. И. Менделеева начала работу Главная палата мер и весов. Теперь это Всесоюзный научно-исследовательский институт метрологии, носящий его имя. Там получают право на существование эталоны-копии, эталоны-свидетели и рабочие эталоны различных рангов. Оттуда они начинают свой путь во все концы страны с тем, чтобы периодически возвращаться для сверки.

    С помощью этих эталонов непрерывно осуществляется контроль рабочих мер на заводах и в институтах, на кораблях и в магазинах — словом, везде, где производятся измерения. (Установлено, что на них в наши дни затрачивается в промышленности от 10 до 50 процентов всего рабочего времени.)

    Эталонов низших рангов требуется все больше, требования к их точности растут, и все труднее обеспечить их изготовление и хранение.

    Незначительное отклонение, и эталон уже не эталон. Поэтому заветная мечта поколений метрологов — избавиться от материальных эталонов, заменить их природными, невещественными константами, неизмененными и легко воспроизводимыми.

    Хранение времени, определение его эталона (секунды), астрономическими методами было мучительно трудным, пока не установили, что секунда равна 9192631770 периодам колебаний атома цезия, которые безошибочно «отсчитывает» созданный для этой цели прибор.

    В 1960 году усилиями ученых многих стран удалось «вывести в отставку» платино-иридиевый эталон метра. По решению состоявшейся тогда XI Генеральной конференции по мерам и весам метр получил новое определение, был признан равным 1 650 736,73 длины волны оранжевого излучения криптона-86.

    Калибровка и сличение мер длины теперь производятся с помощью эталонных установок, состоящих из криптоновой лампы, спектроинтерферометра и компаратора. А прежний наш государственный эталон-копия № 28, так же как и его парижский родоначальник, хранится в подземных сейфах уже в качестве дублера.

    Из триады важнейших эталонов (м, кг, с) до наших дней неизменным остался только эталон массы — килограмм. По-прежнему это платино-иридиевый цилиндрик высотой и диаметром 39 миллиметров. Он, как и копии государственные эталоны, хранится в стабильных условиях глубоко под землей, на подставке из горного хрусталя, под двойным стеклянным колпаком. Поблизости на таком же массивном фундаменте глубиной 7 метров установлены точнейшие весы для сличения с другими эталонами более низких рангов. Управление весами и перемещение эталонов производятся дистанционно, без прикосновения рук. Процесс медленный, трудный, а потребности очень велики, особенно потому, что не только эталоны, но и рабочие гири многих приборов необходимо изготовлять с эталонной точностью, например для гравиметров, которыми «взвешивают» нашу планету. Если бы она была однородна, значение силы тяжести в любой точке зависело бы только от его географических координат. Но горные породы имеют различную плотность, и поэтому реальные значения силы тяжести обычно отличаются от теоретических. Знать эти отклонения необходимо для расчета траекторий полетов, поисков полезных ископаемых и других целей. Силу тяжести определяют по растяжению или сокращению кварцевой нити, на которой подвешен платиновый груз в герметическом сосуде гравиметра.

    От попыток заменить платину более легким металлом пришлось отказаться — это снижало точность, а требования к гравиметрическим измерениям становятся все выше.

    Приведенный пример-один из многих, показывающих, как разнообразна область весовых измерений, требующих эталонирования. Поэтому проблема замены материального эталона веса иным, более удобным, очень актуальна, и над ее решением работают во многих странах, но пока платиново-иридиевый цилиндрик, хранимый в Севре, по-прежнему остается основой основ.

    Велико также стремление уменьшить расход платиновых металлов на эталоны, но осуществить это не удается. Так, не обошлись без платины при создании нового эталона, который получил название кандела (кд) — свеча и призван обеспечить единство световых измерений, необходимое при всевозрастающем разнообразии источников освещения.

    Государственный световой эталон разработан ВНИИМ им. Менделеева и утвержден 10 декабря 1968 года Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР. Эталон представляет собой полный излучатель, или абсолютно черное тело, устойчиво порождающее при определенной температуре свет всех длин волн видимого спектра с постоянной яркостью.

    Конструктивно это сосуд с платиной, в который погружена трубочка из окиси тория. Нагрев платины до плавления током высокой частоты порождает свечение окиси тория. Процесс затвердевания платины характерен замечательным постоянством температуры, и свечение окиси тория при таких условиях признано эталонным.

    Луч света из трубочки излучателя попадает в оптическое устройство, с помощью которого фиксируют силу и яркость эталона, определяют в световых единицах яркость других объектов.

    Многочисленные эксперименты показали, что сочетание окись тория платина обеспечивает наибольшую надежность определения канделы.

    Долгое время иридий использовался в эталонах лишь в качестве добавки к платине, улучшающей свойства сплава. Теперь установлено, что иридий обладает наиболее постоянным коэффициентом линейного расширения при низких температурах. Это свойство обусловило его применение в качестве эталона при замерах строения кристаллической решетки различных веществ.

    Все это не дает оснований предполагать, что в близком будущем удастся существенно сократить расход платиновых металлов на эталоны.

    Металл роскоши. Рекламное предсказание 1776 года полностью подтвердилось примерно через полвека: платина стала металлом роскоши, «ювелирной королевой», и не только из-за престижности, обусловленной высокой ценой. В платиновой оправе бриллианты, изумруды, аквамарины, жемчуг выглядят крупнее, ярче становятся присущая им окраска и рисунок. Такая оправа и самая надежная-лучшие драгоценные камни давно уже в нее одеты. Не случайно высшая награда для полководцев нашей страны-орден Победы, несущий более ста бриллиантов, выполнен из платины.

    По расходованию ее на ювелирные изделия можно разграничить благополучные и трудные годы в истории.

    В 1913 году, перед началом первой мировой войны на предметы роскоши, если причислить к ним и платиновые зубы, ушло около 3 тонн, почти 60 процентов всего использованного металла. Это рекорд, но только в процентном отношении. В дальнейшем резко возросли технические применения, они составляют около 80 процентов, хотя на украшения используется платины теперь раз в 15 больше, чем в тот рекордный год. Только одна Япония, занимающая ведущее место в ювелирной промышленности капиталистических стран, производит в год около 30 тонн платиновых украшений.

    Долгое время для них использовали лишь самые высокопробные сплавы (добавки, увеличивающие прочность, составляли в них не более 6 процентов). Теперь в связи с расширением и демократизацией спроса японские и другие фирмы капиталистических стран стали использовать низкопробные сплавы, в них серебро преобладает над платиной, но ее содержание (30–40 процентов) обеспечивает благородный вид и неизменность украшений. Промышляют в капиталистических странах и различными подделками под платину, например, изделиями из сплава, содержащего 70 процентов серебра и 30 процентов золота, азотная кислота на этот сплав не действует, поэтому лишь тщательное исследование позволяет изобличить обман.

    За последние десятилетия распространение получили изделия из палладия, он по-своему красив, не тускнеет, хорошо сохраняет полировку и дешевле платины по весу более чем втрое, а по объему в 7 раз. Прочность палладия на растяжение и твердость недостаточны, чтобы делать из него оправу для драгоценных камней. Но этот недостаток удалось устранить добавкой 4 процентов рутения и одного процента родия, благодаря им прочность увеличивается вдвое. Твердость в такой же мере повышают холодной прокаткой сплава. И все же в изделиях такого класса камни обычно используются синтетические, «полудрагоценные».

    Название «белое золото» к платине не привилось, и теперь так называют сплав палладия и золота в соотношении примерно 1:5. Он имеет снежно-белую окраску, и изделия из него пользуются большим спросом. Кстати, Лондонское геологическое общество с 1846 года отмечает научные заслуги медалью имени Волластона из палладия. Учреждена эта медаль была в 1831 году, но первые 15 лет ее чеканили из золота, пока не было налажено извлечение палладия из палладистого золота бразильских месторождений. Этой медалью в 1943 году был награжден советский академик А. Е. Ферсман.

    Американское электрохимическое общество награждает медалью из палладия за выдающиеся достижения в электрохимии. В 1967 году такая медаль была присуждена советскому академику А. П. Фрумкину.

    За последнее время еще один платиноид получил применение в ювелирных изделиях — родиевые покрытия придают им солнечный блеск. В натуральном виде родий ювелиры почти не используют, стоит он примерно втрое дороже платины, а легковесен, как палладий, и изделия из него не производят внушительного впечатления.

    ЕЩЕ О ПРИМЕНЕНИЯХ

    «Запасные части» для человека. Медицина — одна из немногих областей, где расходование платины существенно сократилось по сравнению с началом века. Тогда, например в 1906 году, около 40 процентов мирового потребления платины ушло на зубоврачебные цели: благодаря одинаковому коэффициенту расширения фарфора и платины штифты и коронки из нее были вне конкуренции, пока не появился сплав «платинит», вводящий в заблуждение своим названием, он состоит лишь из никеля и железа (поровну) и обладает одинаковым коэффициентом расширения с платиной, вполне заменяя ее в сочетаниях с фарфором. И все же в США, например, не менее 500 килограммов платины в год расходуют стоматологи.

    Теперь из иридистой платины изготовляют лишь некоторые хирургические инструменты, например полые иглы к шприцам для ртутных препаратов.

    Незаменимы платино-иридиевые электроды в качестве стимуляторов сердечной деятельности. Их вживляют в сердце больных тяжелой формой стенокардии. Когда наступает приступ, больной включает генератор с кольцевой антенной-его носят в кармане, — импульсы через приемник воспринимают электроды, вызывают раздражение нервных волокон, форсируют работу сердца. Даже при остановке его прямое подключение генератора к электродам, осуществленное врачом, нередко спасает жизнь больного.

    Используют платино-иридиевые электроды в различных исследованиях, например мозга. Но не только стойкость платиновых металлов обусловливает их применение в медицине. При лечении некоторых кожных и онкологических заболеваний успех приносят биологически активные соединения рутения, а его хлорид — очень стойкая красная краска, избирательно окрашивающая некоторые вещества костей и тканей, что помогает при микроскопическом их изучении.

    Упругие элементы микронной толщины. Почти в каждом «особо точном» приборе их множество. Это спиральные пружинки, растяжки, подвески рессорные и торсионные (работающие на скручивание) и многие иные. Их изготовляют из тончайших проволок и лент, К ним предъявляют очень жесткие требования: упругие элементы при всей их миниатюрности должны обладать высокой прочностью, стойкостью и стабильностью в работе в самых трудных условиях, иметь малое упругое последействие, не намагничиваться и т. д.

    Платина самый «тягучий» металл, из одного грамма удается получить почти 100-километровую нить (толщиной 0,0007 миллиметра). Для этого платиновую заготовку покрывают серебром и последовательно пропускают через все более тонкие фильеры — отверстия в алмазе, а затем обрабатывают азотной кислотой, которая растворяет серебро, но не действует на платину.

    Казалось бы, платина идеальный материал для изготовления упругих элементов, но требования, предъявляемые к ним, столь многогранны, что им ни одно природное вещество полностью не удовлетворяет, необходимо создавать особые композиции.

    Изготовление тончайших упругих элементов было монополией немногих капиталистических фирм, но в 1969 году появилось в печати многих стран сообщение о том, что в СССР выпускают миллионными экземплярами различные упругие элементы из сплава платины с серебром, которые получили Знак качества и по своим характеристикам превосходят выпускаемые зарубежными фирмами.

    Тензодатчики. С их помощью производится измерение давления и других параметров напряженного состояния реактивных двигателей, турбин, работающих на предельных нагрузках, при температурах, превышающих 1000 °C. Определение тензочувствительности множества материалов показало, что платина и палладий обладают лучшими показателями, они незаменимы в самых ответственных случаях. Для более легких условий допустимы сплавы палладия с серебром, платины с вольфрамом и некоторые другие.

    Предохранительные клапаны. Любой работающий под давлением аппарат должен иметь предохранительный клапан. Разновидностей их придумано много, но в принципе все они представляют собой пробку, прижимаемую пружиной или противовесом. Такие клапаны просты, но ненадежны, обладают большой инерцией и поэтому не успевают сработать при очень резком скачке давления. Не обеспечивают они и полной герметичности. В их недостатках убеждались не раз, на горьком опыте.

    Поэтому везде, где необходима очень надежная защита, применяют капсюльные устройства — куполообразные диски, которые разрушаются при определенном давлении.

    Платиновые и палладиевые диски оказались для этих целей лучшими и практически незаменимыми. Стоят они дорого, но когда устройство срабатывает, металл образует «лепестки» по периферии отверстия и может быть вновь использован почти без потерь.)

    Олимпийская платиновая… О каждой Олимпиаде остается след не только в ее спортивных достижениях, но и во многом ином. Каких только памятных знаков: монет, марок, художественных изделий-не создавали для этих целей!

    По свидетельству Аристотеля, специальные монеты впервые были отчеканены в Мессане в честь 75-й Олимпиады (480 г. до н. э.). Позднее многие государства Древней Греции выпускали монеты с изображением спортсменов, а также и покровителей игр-бога Зевса и нимфы Олимпии. На монетах Химеры (V в. до н. э.) изображен гонщик на колеснице, а Памфилия увековечила борцов и копьеметателей. В Македонии чеканка олимпийских монет производилась при Филиппе II и его сыне Александре Македонском. В Древнем Риме при Нероне (1 век н. э.) распространение получила монета с изображением спортсменов на колеснице, обрамленных надписью «Олимпиада» (на латыни).

    Древний обычай был восстановлен во время XV игр (1952) в Финляндии. На лицевой стороне монеты тогда впервые была изображена олимпийская эмблема пять сплетенных колец, символизирующих пять континентов.

    Выпуск олимпийских монет был продолжен в 1964 году, в честь зимних игр в Австрии (изображен прыгун с трамплина) и летних игр в Японии (изображены олимпийская эмблема и факел). В дальнейшем чеканка монет к олимпиадам стала традиционной.

    Все выпущенные в честь Олимпийских игр монеты с древних времен были серебряные. Лишь в 1972 году в Японии к зимней Олимпиаде в Саппоро отчеканили медно-никелевые. В том же году к летней Олимпиаде в Мюнхене памятные золотые монеты неожиданно для всех создала Центрально-Африканская Республика, а также княжество Фуджейро. Из стран-организаторов первой золотые монеты выпустила Канада к XXI играм (1976) с изображением богини Афины и атлета, окруженных надписью: «776 г. до н. э.- 1976 г.» К этому же событию отчеканили золотые монеты Западное Самоа (с изображением тяжелоатлета и олимпийского факела), йеменская Арабская Республика (с изображением 10 спортсменов у олимпийского огня)…

    Золото, серебро, медь, никель — казалось бы, традиционные монетные возможности исчерпаны, и нумизматических новинок, связанных с олимпиадами, больше ждать не приходится. Но Московская Олимпиада будет памятна и в этом отношении. Помимо золотой, серебряной и медно-никелевых монет, Министерство финансов и Государственный банк СССР выпустили в обращение еще и уникальную платиновую монету достоинством 150 рублей. Она имеет форму круга диаметром 28,6 миллиметра. На лицевой стороне в верхнем сегменте расположено рельефное изображение государственного герба и под ним надпись «СССР», а в нижнем сегменте-рельефная надпись в две строки: «150 рублей». На оборотной стороне-надпись по окружности: «Игры XXII Олимпиады. Москва. 1980» под ней слева фигура дискобола, справа эмблема Олимпийских игр; внизу указан год чеканки монеты. С лицевой и оборотной стороны монета имеет выступающий кант по окружности, ее боковая поверхность рифленая.

    Выпуск этой уникальной монеты не случаен, она, как и ее далекие предшественники — «уральские червонцы» 1828–1844 годов, отображает ведущую роль нашей страны в истории использования платины.[11]

    КОЕ-ЧТО О ПРЕДЫСТОРИИ, ПОДДЕЛКАХ И ЗАПРЕТАХ

    Заканчивая рассказ о применении платиновых металлов, напомним и о том, что имеет к этой теме лишь косвенное отношение.

    Розыскания специалистов показывают, что использование платины началось значительно раньше, чем еще недавно предполагалось. Доказательством служат некоторые золотые изделия эпохи XII династии Древнего Египта, в них имеются не только включения «сырой платины», но и обработанные пластинки из сплава, в котором главный компонент — платина.

    В более поздних изделиях, например в статуэтке фараона Аменардаса (XXV династия, около 700 лет до н. э.), тоже обнаружены включения платины с признаками обработки.

    Удалось выяснить, что в Древний Египет золото поступало из россыпей Эфиопии, где платина местами образует значительную примесь. Принимали ли египтяне ее за серебро или считали особым металлом, неизвестно.

    Знали о платине и в Древнем Риме, там ее с серебром не путали и называли белым свинцом — Plumbum candidum. Сведения об этом металле, который «в брусках имеет вес золота», содержатся в пятой книге «Естественной истории» Плиния Старшего (23–79 гг.). Под его руководством производилась разработка золотых россыпей в Испании и Португалии. Плиний отметил, что «белый свинец» содержится в долинах рек Силь, Тахо, Гуадиро (Гуадьяро) и др.

    Плиний был одним из образованнейших людей своего времени и, конечно, понимал необычность этого металла. К сожалению, его запись чересчур лаконична. Из нее мало что можно узнать. Сколько было добыто белого свинца, как удалось изготовить из него бруски, как они были использованы — все это остается неизвестным. А подтверждением тому, что речь у Плиния идет о платине, явилось обнаружение ее в остатках россыпей, уцелевших у реки Силь.

    На противоположной стороне земного шара, в Эквадоре, у побережья Эсмеральдас обнаружены не только изделия инков — кольца, браслеты, небольшие сосуды из платины, но и остатки мастерской, в которой их изготовляли. Это позволило восстановить технологию. Пылевидные зерна платины, перемешанные с золотом, маленькими порциями нагревали на древесном угле, и золото при этом обволакивало платину, прочно с ней слипалось. Этот сплав подвергали ковке, нагреву, снова ковке — многократно, пока он не становился однородным. Внешне такой металл почти не отличался от «европейского» — плавленого.

    Изделия инков и следы разработок в долинах рек показали, что добыча золота и платины осуществлялась на территории их государства веками.

    И в Колумбии удалось установить, что платину там добывали задолго до испанцев. Индейцы называли ее «чумпи». Крупным самородкам они поклонялись, а мелкие использовали в качестве гирь (совмещая таким образом святость с коммерцией). О «чумпи» сообщил один из пионеров освоения края Скалигер еще в 1582 году. Более подробное описание колумбийской платины сделал в 1640 году испанский ученый Альваро Барба.

    Из всего этого следовало, что Антонно Уллоа вовсе не первооткрыватель, а лишь удачник, поймавший славу. В Англии такой вывод был встречен с одобрением, там считали, что славу следует разделить между доктором Вудом, первым доставившим в Лондон колумбийскую руду, и доктором Уотсоном, который опубликовал ее описание в трудах Королевского общества чуть раньше, чем вышла книга Уллоа. Сторонников этой схемы неожиданно подвело признание самого Уотсона, обнаруженное в его статье, опубликованной в 1751 году. Он сообщил там, что еще до него изучением металла, более тяжелого, чем золото, занимался физик Гравезанд, получивший его не из Колумбии, а из Восточной Индии.

    Это окончательно завело в тупик споро приоритете, и подводить итог, по-видимому, еще рано.

    Зеркала с секретом. Платина обладает меньшей отражательной способностью, чем серебро или родий, и тем не менее имеются зеркала, из нее изготовленные.

    Они не предназначены для технических целей и нужны только тем, кто склонен поглядеть в замочные скважины. Платина в тонком слое обладает замечательной прозрачностью. С теневой стороны сквозь нее все видно, а со стороны источника света она все отражает, как положено обычному зеркалу. Есть сведения, что такими зеркалами маскировали свои наблюдательные пункты не только «надзирающие и пресекающие», но и просто любители пикантных зрелищ.

    Сохранились ли такие зеркала, изготовляют ли их теперь — автору неизвестно.

    Драгоценные подделки. Существуют французские двадцатифранковики, на которых обозначен 1858 год, и английские фунты стерлингов 1872 года, которых когда-то остерегались как злостной подделки, а теперь о них мечтают все коллекционеры.

    Эти монеты были кем-то отчеканены из платины и одеты в золотую рубашку.

    Элементы, которые нельзя метать. Все шире становится область применения платиноидов, но неожиданно возникла и запретная для них зона — в спорте.

    Еще в средние века метание молота было излюбленным профессиональным соревнованием кузнецов. Постепенно оно переросло цеховые рамки, и спортивный молот стал все меньше походить на орудие труда.

    К началу нашего века он принял современный облик — металлическое ядро на гибкой проволоке — тяге, унаследовав от своего предка лишь название. Масса снаряда была строго ограничена правилами — 16 английских фунтов (7257 граммов).

    Задача спортсмена-сильно раскрутить молот: чем больше будет центробежная сила, тем дальше он улетит. Величина центробежной силы, кроме мастерства спортсмена, зависит еще и от радиуса вращения — расстояния между рукояткой и центром тяжести молота.

    Общая длина снаряда (ядро плюс тяга) установлена правилами, но в них осталась лазейка: не меняя общей длины снаряда, можно сместить центр тяжести! Для этого следует изготовить ядро из более тяжелого материала, уменьшив его размер и удлинив соответственно тягу.

    Такая возможность была использована в начале 20-х годов нынешнего столетия, когда появились спортивные молоты с ядром из бронзы (взамен чугуна), что позволило уменьшить диаметр на несколько миллиметров.

    Дальше-больше! В 1947 году рекорд был увеличен сразу на 1,5 метра. Спортсмен бросал молот, который по весу точно соответствовал правилам, но имел диаметр 105 миллиметров-на 15 миллиметров меньше обычного. Аэродинамический расчет показал, что в данном случае рекорд-заслуга не спортсмена, а ядра. Секрет ядра удалось раскрыть, оказалось, что в стальную оболочку была залита ртуть (ее удельный вес в полтора раза выше, чем у латуни).

    «Ртутный» молот немедленно был запрещен прежде всего из-за опасности отравления, поскольку благодаря высокому поверхностному натяжению ртуть способна проникать сквозь мельчайшие трещины. Запретили заполнять ядро и любой другой жидкостью исходя из того, что она не может заполнить все пространство; при броске центр тяжести будет перемещаться, и случайно кто-либо из спортсменов окажется в лучших условиях.

    Соревнование — уже не спортсменов, а технологов и «толстосумов» продолжалось: начали создавать сверхтяжелые молоты из вольфрама, платины, осмия, иридия. Конец этому положила Международная легкоатлетическая федерация — минимальный диаметр ядра был установлен в 100 миллиметров. Стандартным стало ядро из стальной оболочки, заполненной свинцом. Вскоре обнаружилась еще одна лазейка. Оказалось, что можно увеличить радиус вращения молота за счет растяжения стальной тяги. Американский метатель Г. Конноли стал рекордсменом, использовав «тягучую» стальную проволоку и делая не три, как все спортсмены, а четыре оборота. В связи с этим пришлось регламентировать и допустимое растяжение тяги. Теперь победа метателей не зависит от привходящих обстоятельств.

    Иридий и гибель динозавров. Эти пресмыкающиеся жили на протяжении всей мезозойской эры. Были среди них гиганты-длина 30 метров, вес 80 тонн!

    Скелеты брахио-, бронто-, цетно-, ульта- и многих иных «завров» реконструированы, украшают музеи, но как были устроены внутренние органы и мышцы, как обеспечивалось кровоснабжение — все это остается неясным. А самой большой загадкой является мгновенное, по геологическим масштабам времени, вымирание динозавров в конце мелового периода.

    Объяснений предложено много: глобальное изменение климата, «мировая война» между динозаврами и вышедшими тогда на арену истории млекопитающими…

    Ни одна из гипотез не получила общего признания, и теперь выдвинута еще одна: причина гибели динозавров — иридий! Сотрудники Калифорнийского университета, профессор Альварес и другие, как сообщил «New scientist» (№ 158, 1979), установили, что в костях динозавров и в слоях, вмещающих их «кладбище», содержание иридия (по сравнению с его кларком) резко — в тридцать раз — повышено. Это установлено в Италии, Новой Зеландии, Испании, Дании в пласте глин, разделяющем отложения мелового и третичного периодов. Объяснение еще не дано, исследования продолжаются и, как отметил их руководитель, «наводят на размышления», возникают аналогии с радиогенным рутением, угрожающим бедами в наши дни. Наиболее вероятно накопление иридиевой пыли в связи с космической катастрофой — падением, например, метеорита, богатого таким металлом.

    В связи со всем этим надо отметить, что замечательные свойства платиновых металлов, обусловившие их широкое и разнообразное применение в технике, в то же время явились преградой для их участия в природных биологических процессах. Только осмий и рутений обнаружены в живых существах, но содержание их ничтожно, и биологическая роль пока выяснена не более, чем причастность иридия к гибели динозавров.

    О драконах и платине-с улыбкой. По новейшим данным в гибели динозавров повинны драконы, а в гибели драконов-платина (точнее, ее отсутствие). К таким выводам приводит новая отрасль познания — драконоведение, объединившая реалистов и фантастов. Обстоятельный обзор ее достижений дал доктор А. Кон («Химия и жизнь», № 4, 1977). Адресуя к нему желающих глубоко изучить проблему, остановимся лишь на самом необходимом.

    О том, что драконы при движении выбрасывают желтое пламя, черный дым и серый смрад, свидетельствуют не только древние документы, но и наши современники, такие авторитеты, как Е. Шварц (в пьесе «Дракон»), братья Стругацкие («Понедельник начинается в субботу») и многие другие.

    Это отличие драконов от всех других позвоночных доказывает, что их биологическое формирование происходило в иных условиях и они, бесспорно, пришельцы из космоса.

    Методами моделирования с использованием ЭВМ шестого поколения установлено, что драконы все съедаемое перерабатывают в сероводород, а его возгорание при выдохе происходит при каталитическом воздействии платины. Ее драконы накапливали, поглощая наносы в речных долинах (следы, указывающие на это, обнаружены во многих районах).

    В свете этих данных весьма обоснованным выглядит предположение, что драконы в борьбе за место под солнцем в короткий срок уничтожили огненным своим дыханием динозавров. Сами же они вымирали в основном из-за платинового голода, исчерпав доступные для разработки россыпи. (Этим, по-видимому, и объясняется, что платиновых россыпей досталось человечеству так мало, в сотни раз меньше, чем золотых).

    Информация обо всем этом представляется необходимой: она показывает, что платина заняла приличествующее ей место не только в науке и технике, но и в фантастике.


    Примечания:



    1

    Филипп Бурбон получил испанскую корону в результате так называемой войны за испанское наследство (1701–1714), начавшейся после смерти бездетного короля Карла II.



    10

    Кимберлит — ультраосновная порода, состоит из обломков пироксенита, а также оливина, гранита, часто алмазоносна



    11

    Обзор чеканки олимпийских монет основан на материале статьи А. Макарова (см. Наука и жизнь, 1980, № 2)








    Главная | Контакты | Прислать материал | Добавить в избранное | Сообщить об ошибке